ترغب بنشر مسار تعليمي؟ اضغط هنا

A new strategy, namely the clean numerical simulation (CNS), was proposed (J. Computational Physics, 418:109629, 2020) to gain reliable/convergent simulations (with negligible numerical noises) of spatiotemporal chaotic systems in a long enough inter val of time, which provide us benchmark solution for comparison. Here we illustrate that machine learning (ML) can always give good enough fitting predictions of a spatiotemporal chaos by using, separately, two quite different training sets: one is the clean database given by the CNS with negligible numerical noises, the other is the polluted database given by the traditional algorithms in single/double precision with considerably large numerical noises. However, even in statistics, the ML predictions based on the polluted database are quite different from those based on the clean database. It illustrates that the database noises have huge influences on ML predictions of some spatiotemporal chaos, even in statistics. Thus, we must use a clean database for machine learning of some spatiotemporal chaos. This surprising result might open a new door and possibility to study machine learning.
94 - Yichao Yan , Jinpeng Li , Jie Qin 2021
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images. To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN. Owing to the ROI-Align operation, this pipeline yields promising accuracy as re-id features are explicitly aligned with the corresponding object regions, but in the meantime, it introduces high computational overhead due to dense object anchors. In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs. First, we select an anchor-free detector (i.e., FCOS) as the prototype of our framework. Due to the lack of dense object anchors, it exhibits significantly higher efficiency compared with existing person search models. Second, when directly accommodating this anchor-free detector for person search, there exist several major challenges in learning robust re-id features, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task). To address these issues, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings. Accordingly, we name our model as Feature-Aligned Person Search Network (AlignPS). Third, by investigating the advantages of both anchor-based and anchor-free models, we further augment AlignPS with an ROI-Align head, which significantly improves the robustness of re-id features while still keeping our model highly efficient. Extensive experiments conducted on two challenging benchmarks (i.e., CUHK-SYSU and PRW) demonstrate that our framework achieves state-of-the-art or competitive performance, while displaying higher efficiency. All the source codes, data, and trained models are available at: https://github.com/daodaofr/alignps.
66 - Jingcheng Ni , Jie Qin , Di Huang 2021
Action detection plays an important role in high-level video understanding and media interpretation. Many existing studies fulfill this spatio-temporal localization by modeling the context, capturing the relationship of actors, objects, and scenes co nveyed in the video. However, they often universally treat all the actors without considering the consistency and distinctness between individuals, leaving much room for improvement. In this paper, we explicitly highlight the identity information of the actors in terms of both long-term and short-term context through a graph memory network, namely identity-aware graph memory network (IGMN). Specifically, we propose the hierarchical graph neural network (HGNN) to comprehensively conduct long-term relation modeling within the same identity as well as between different ones. Regarding short-term context, we develop a dual attention module (DAM) to generate identity-aware constraint to reduce the influence of interference by the actors of different identities. Extensive experiments on the challenging AVA dataset demonstrate the effectiveness of our method, which achieves state-of-the-art results on AVA v2.1 and v2.2.
Video-based person re-identification (re-ID) is an important research topic in computer vision. The key to tackling the challenging task is to exploit both spatial and temporal clues in video sequences. In this work, we propose a novel graph-based fr amework, namely Multi-Granular Hypergraph (MGH), to pursue better representational capabilities by modeling spatiotemporal dependencies in terms of multiple granularities. Specifically, hypergraphs with different spatial granularities are constructed using various levels of part-based features across the video sequence. In each hypergraph, different temporal granularities are captured by hyperedges that connect a set of graph nodes (i.e., part-based features) across different temporal ranges. Two critical issues (misalignment and occlusion) are explicitly addressed by the proposed hypergraph propagation and feature aggregation schemes. Finally, we further enhance the overall video representation by learning more diversified graph-level representations of multiple granularities based on mutual information minimization. Extensive experiments on three widely adopted benchmarks clearly demonstrate the effectiveness of the proposed framework. Notably, 90.0% top-1 accuracy on MARS is achieved using MGH, outperforming the state-of-the-arts. Code is available at https://github.com/daodaofr/hypergraph_reid.
Learning to re-identify or retrieve a group of people across non-overlapped camera systems has important applications in video surveillance. However, most existing methods focus on (single) person re-identification (re-id), ignoring the fact that peo ple often walk in groups in real scenarios. In this work, we take a step further and consider employing context information for identifying groups of people, i.e., group re-id. We propose a novel unified framework based on graph neural networks to simultaneously address the group-based re-id tasks, i.e., group re-id and group-aware person re-id. Specifically, we construct a context graph with group members as its nodes to exploit dependencies among different people. A multi-level attention mechanism is developed to formulate both intra-group and inter-group context, with an additional self-attention module for robust graph-level representations by attentively aggregating node-level features. The proposed model can be directly generalized to tackle group-aware person re-id using node-level representations. Meanwhile, to facilitate the deployment of deep learning models on these tasks, we build a new group re-id dataset that contains more than 3.8K images with 1.5K annotated groups, an order of magnitude larger than existing group re-id datasets. Extensive experiments on the novel dataset as well as three existing datasets clearly demonstrate the effectiveness of the proposed framework for both group-based re-id tasks. The code is available at https://github.com/daodaofr/group_reid.
Measurements on cluster states can be used to process quantum information. But errors in cluster states naturally accrue as error-prone inter-particle interactions entangle qubits. We consider one-dimensional cluster states built from controlled phas e, Ising, and XY interactions with slow two-qubit error in the interaction strength, consistent with error models of interactions found in a variety of qubit architectures. We focus on measurement protocols designed to implement perfect teleportation wherein quantum information moves across a cluster state intact. Deviations from perfect teleportation offer a proxy for entanglement that can be degraded by two-qubit gate errors. We detail an experimentally viable teleportation fidelity that offers a measure of the impact of error on the cluster state as a whole. Our fidelity calculations show that the error has a distinctly different impact depending on the underlying interaction used for the two-qubit entangling gate. In particular, the Ising and XY interactions can allow perfect teleportation through the cluster state even with large errors, but the controlled phase interaction does not. Nonetheless, we find that teleportation through cluster state chains of size $N$ has a maximum two-qubit error for teleportation along a quantum channel that decreases as $N^{-1/2}$. To allow construction of larger cluster states, we also design lowest-order refocusing pulses for correcting slow errors in the interaction strength. Our work generalizes to higher-dimensional cluster states and sets the stage for experiments to monitor the growth of entanglement in cluster states built from error-prone interactions.
305 - Yichao Yan , Jinpeng Li , Jie Qin 2021
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images, which can be regarded as the unified task of pedestrian detection and person re-identification (re-id). Most existing works employ two-stage d etectors like Faster-RCNN, yielding encouraging accuracy but with high computational overhead. In this work, we present the Feature-Aligned Person Search Network (AlignPS), the first anchor-free framework to efficiently tackle this challenging task. AlignPS explicitly addresses the major challenges, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task), when accommodating an anchor-free detector for this task. More specifically, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings by following a re-id first principle. Such a simple design directly improves the baseline anchor-free model on CUHK-SYSU by more than 20% in mAP. Moreover, AlignPS outperforms state-of-the-art two-stage methods, with a higher speed. Code is available at https://github.com/daodaofr/AlignPS
Previous studies dominantly target at self-supervised learning on real-valued networks and have achieved many promising results. However, on the more challenging binary neural networks (BNNs), this task has not yet been fully explored in the communit y. In this paper, we focus on this more difficult scenario: learning networks where both weights and activations are binary, meanwhile, without any human annotated labels. We observe that the commonly used contrastive objective is not satisfying on BNNs for competitive accuracy, since the backbone network contains relatively limited capacity and representation ability. Hence instead of directly applying existing self-supervised methods, which cause a severe decline in performance, we present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution, to minimize the loss and obtain desirable accuracy. Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.5~15% on BNNs. We further reveal that it is difficult for BNNs to recover the similar predictive distributions as real-valued models when training without labels. Thus, how to calibrate them is key to address the degradation in performance. Extensive experiments are conducted on the large-scale ImageNet and downstream datasets. Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods. Code is available at https://github.com/szq0214/S2-BNN.
The goal of few-shot learning is to learn a classifier that can recognize unseen classes from limited support data with labels. A common practice for this task is to train a model on the base set first and then transfer to novel classes through fine- tuning (Here fine-tuning procedure is defined as transferring knowledge from base to novel data, i.e. learning to transfer in few-shot scenario.) or meta-learning. However, as the base classes have no overlap to the novel set, simply transferring whole knowledge from base data is not an optimal solution since some knowledge in the base model may be biased or even harmful to the novel class. In this paper, we propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model. Specifically, layers will be imposed different learning rates if they are chosen to be fine-tuned, to control the extent of preserved transferability. To determine which layers to be recast and what values of learning rates for them, we introduce an evolutionary search based method that is efficient to simultaneously locate the target layers and determine their individual learning rates. We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method. It achieves the state-of-the-art performance on both meta-learning and non-meta based frameworks. Furthermore, we extend our method to the conventional pre-training + fine-tuning paradigm and obtain consistent improvement.
81 - Yue Chang , Yu-Hao Guo , Jie Qin 2018
Alkali-metal-vapor magnetometers, using coherent precession of polarized atomic spins for magnetic field measurement, have become one of the most sensitive magnetic field detectors. Their application areas range from practical uses such as detections of NMR signals to fundamental physics research such as searches for permanent electric dipole moments. One of the main noise sources of atomic magnetometers comes from the light shift that depends on the frequency of the pump laser. In this work, we theoretically study the light shift, taking into account the relaxation due to the optical pumping and the collision between alkali atoms and between alkali atoms and the buffer gas. Starting from a full master equation containing both the ground and excited states, we adiabatically eliminate the excited states and obtain an effective master equation in the ground-state subspace that shows an intuitive picture and dramatically accelerates the numerical simulation. Solving this effective master equation, we find that in the light-narrowing regime, where the line width is reduced while the coherent precession signal is enhanced, the frequency-dependence of the light shift is largely reduced, which agrees with experimental observations in cesium magnetometers. Since this effective master equation is general and is easily solved, it can be applied to an extensive parameter regime, and also to study other physical problems in alkali-metal-vapor magnetometers, such as heading errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا