ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthogonal Time Frequency Space (OTFS) is a novel framework that processes modulation symbols via a time-independent channel characterized by the delay-Doppler domain. The conventional waveform, orthogonal frequency division multiplexing (OFDM), requ ires tracking frequency selective fading channels over the time, whereas OTFS benefits from full time-frequency diversity by leveraging appropriate equalization techniques. In this paper, we consider a neural network-based supervised learning framework for OTFS equalization. Learning of the introduced neural network is conducted in each OTFS frame fulfilling an online learning framework: the training and testing datasets are within the same OTFS-frame over the air. Utilizing reservoir computing, a special recurrent neural network, the resulting one-shot online learning is sufficiently flexible to cope with channel variations among different OTFS frames (e.g., due to the link/rank adaptation and user scheduling in cellular networks). The proposed method does not require explicit channel state information (CSI) and simulation results demonstrate a lower bit error rate (BER) than conventional equalization methods in the low signal-to-noise (SNR) regime under large Doppler spreads. When compared with its neural network-based counterparts for OFDM, the introduced approach for OTFS will lead to a better tradeoff between the processing complexity and the equalization performance.
Estimating 3D hand and object pose from a single image is an extremely challenging problem: hands and objects are often self-occluded during interactions, and the 3D annotations are scarce as even humans cannot directly label the ground-truths from a single image perfectly. To tackle these challenges, we propose a unified framework for estimating the 3D hand and object poses with semi-supervised learning. We build a joint learning framework where we perform explicit contextual reasoning between hand and object representations by a Transformer. Going beyond limited 3D annotations in a single image, we leverage the spatial-temporal consistency in large-scale hand-object videos as a constraint for generating pseudo labels in semi-supervised learning. Our method not only improves hand pose estimation in challenging real-world dataset, but also substantially improve the object pose which has fewer ground-truths per instance. By training with large-scale diverse videos, our model also generalizes better across multiple out-of-domain datasets. Project page and code: https://stevenlsw.github.io/Semi-Hand-Object
191 - Jiarui Xu , Xiaolong Wang 2021
Learning a good representation for space-time correspondence is the key for various computer vision tasks, including tracking object bounding boxes and performing video object pixel segmentation. To learn generalizable representation for corresponden ce in large-scale, a variety of self-supervised pretext tasks are proposed to explicitly perform object-level or patch-level similarity learning. Instead of following the previous literature, we propose to learn correspondence using Video Frame-level Similarity (VFS) learning, i.e, simply learning from comparing video frames. Our work is inspired by the recent success in image-level contrastive learning and similarity learning for visual recognition. Our hypothesis is that if the representation is good for recognition, it requires the convolutional features to find correspondence between similar objects or parts. Our experiments show surprising results that VFS surpasses state-of-the-art self-supervised approaches for both OTB visual object tracking and DAVIS video object segmentation. We perform detailed analysis on what matters in VFS and reveals new properties on image and frame level similarity learning. Project page is available at https://jerryxu.net/VFS
In this paper, we introduce a new neural network (NN) structure, multi-mode reservoir computing (Multi-Mode RC). It inherits the dynamic mechanism of RC and processes the forward path and loss optimization of the NN using tensor as the underlying dat a format. Multi-Mode RC exhibits less complexity compared with conventional RC structures (e.g. single-mode RC) with comparable generalization performance. Furthermore, we introduce an alternating least square-based learning algorithm for Multi-Mode RC as well as conduct the associated theoretical analysis. The result can be utilized to guide the configuration of NN parameters to sufficiently circumvent over-fitting issues. As a key application, we consider the symbol detection task in multiple-input-multiple-output (MIMO) orthogonal-frequency-division-multiplexing (OFDM) systems with massive MIMO employed at the base stations (BSs). Thanks to the tensor structure of massive MIMO-OFDM signals, our online learning-based symbol detection method generalizes well in terms of bit error rate even using a limited online training set. Evaluation results suggest that the Multi-Mode RC-based learning framework can efficiently and effectively combat practical constraints of wireless systems (i.e. channel state information (CSI) errors and hardware non-linearity) to enable robust and adaptive learning-based communications over the air.
56 - Yue Cao , Jiarui Xu , Stephen Lin 2020
The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies within an image, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found th at the global contexts modeled by the non-local network are almost the same for different query positions. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further replace the one-layer transformation function of the non-local block by a two-layer bottleneck, which further reduces the parameter number considerably. The resulting network element, called the global context (GC) block, effectively models global context in a lightweight manner, allowing it to be applied at multiple layers of a backbone network to form a global context network (GCNet). Experiments show that GCNet generally outperforms NLNet on major benchmarks for various recognition tasks. The code and network configurations are available at https://github.com/xvjiarui/GCNet.
We tackle the challenging problem of human-object interaction (HOI) detection. Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features. In this pap er, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph (one human-centric and one object-centric). Our proposed dual relation graph effectively captures discriminative cues from the scene to resolve ambiguity from local predictions. Our model is conceptually simple and leads to favorable results compared to the state-of-the-art HOI detection algorithms on two large-scale benchmark datasets.
Significant progress has been made in Video Object Segmentation (VOS), the video object tracking task in its finest level. While the VOS task can be naturally decoupled into image semantic segmentation and video object tracking, significantly much mo re research effort has been made in segmentation than tracking. In this paper, we introduce tracking-by-detection into VOS which can coherently integrate segmentation into tracking, by proposing a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance. Notably, our method is entirely online and thus suitable for one-shot learning, and our end-to-end trainable model allows multiple object segmentation in one forward pass. We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا