ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise control of an open quantum system is critical to quantum information processing, but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally at room temperature a type of dy namically corrected gates on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by environment nuclear spin bath is reduced from being the second-order to the sixth-order of the noise to control field ratio, which offers greater efficiency in reducing the infidelity by reducing the noise level. The decay time of the coherent oscillation driven by dynamically corrected gates is shown to be two orders of magnitude longer than the dephasing time, and is essentially limited by spin-lattice relaxation. The infidelity of DCG, which is actually constrained by the decay time, reaches $4times 10^{-3}$ at room temperature and is further reducible by 2-3 orders of magnitudes via lowering temperature. The greatly reduced noise dependence of infidelity and the uttermost extension of the coherent time mark an important step towards fault-tolerant quantum computation in realistic systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا