ترغب بنشر مسار تعليمي؟ اضغط هنا

76 - Heesung Shin , Jiang Zeng 2014
We consider several generalizations of the classical $gamma$-positivity of Eulerian polynomials (and their derangement analogues) using generating functions and combinatorial theory of continued fractions. For the symmetric group, we prove an expansion formula for
100 - Zhicong Lin , Jiang Zeng 2014
We provide combinatorial interpretation for the $gamma$-coefficients of the basic Eulerian polynomials that enumerate permutations by the excedance statistic and the major index as well as the corresponding $gamma$-coefficients for derangements. Our results refine the classical $gamma$-positivity results for the Eulerian polynomials and the derangement polynomials. The main tools are Brandens modified Foata--Strehl action on permutations and the recent triple statistic (des, rix,aid) equidistibuted with (exc, fix, maj).
We study a polynomial sequence $C_n(x|q)$ defined as a solution of a $q$-difference equation. This sequence, evaluated at $q$-integers, interpolates Carlitz-Riordans $q$-ballot numbers. In the basis given by some kind of $q$-binomial coefficients, th e coefficients are again some $q$-ballot numbers. We obtain in a combinatorial way another curious recurrence relation for these polynomials.
In analogy to the definition of the lambda-determinant, we define a one-parameter deformation of the Dodgson condensation formula for Pfaffians. We prove that the resulting rational function is a polynomial with weights given by the crossings and nes tings of perfect matchings and prove several identities and closed-form evaluations.
Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n$ by $n$ determinant $det((a+j-i)Gamma(b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $Pf((j-i)Gamma(b+j+i))$ with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter Pfaffian formula with a $q$-analogue by replacing the Gamma function by the moment sequence of the little $q$-Jacobi polynomials. On the other hand, Nishizawa has found a $q$-analogue of the Mehta--Wang formula. Our purpose is to generalize both the Mehta-Wang and Nishizawa formulae by using the moment sequence of the little $q$-Jacobi polynomials. It turns out that the corresponding determinant can be evaluated explicitly in terms of the Askey-Wilson polynomials.
Motivated by the Hankel determinant evaluation of moment sequences, we study a kind of Pfaffian analogue evaluation. We prove an LU-decomposition analogue for skew-symmetric matrices, called Pfaffian decomposition. We then apply this formula to evalu ate Pfaffians related to some moment sequences of classical orthogonal polynomials. In particular we obtain a product formula for a kind of q-Catalan Pfaffians. We also establish a connection between our Pfaffian formulas and certain weighted enumeration of shifted reverse plane partitions.
In this paper we shall survey the various methods of evaluating Hankel determinants and as an illustration we evaluate some Hankel determinants of a q-analogue of Catalan numbers. Here we consider $frac{(aq;q)_{n}}{(abq^{2};q)_{n}}$ as a q-analogue o f Catalan numbers $C_{n}=frac1{n+1}binom{2n}{n}$, which is known as the moments of the little q-Jacobi polynomials. We also give several proofs of this q-analogue, in which we use lattice paths, the orthogonal polynomials, or the basic hypergeometric series. We also consider a q-analogue of Schroder Hankel determinants, and give a new proof of Moztkin Hankel determinants using an addition formula for ${}_2F_{1}$.
82 - Heesung Shin , Jiang Zeng 2010
For a labeled tree on the vertex set $set{1,2,ldots,n}$, the local direction of each edge $(i,j)$ is from $i$ to $j$ if $i<j$. For a rooted tree, there is also a natural global direction of edges towards the root. The number of edges pointing to a ve rtex is called its indegree. Thus the local (resp. global) indegree sequence $lambda = 1^{e_1}2^{e_2} ldots$ of a tree on the vertex set $set{1,2,ldots,n}$ is a partition of $n-1$. We construct a bijection from (unrooted) trees to rooted trees such that the local indegree sequence of a (unrooted) tree equals the global indegree sequence of the corresponding rooted tree. Combining with a Prufer-like code for rooted labeled trees, we obtain a bijective proof of a recent conjecture by Cotterill and also solve two open problems proposed by Du and Yin. We also prove a $q$-multisum binomial coefficient identity which confirms another conjecture of Cotterill in a very special case.
We describe various aspects of the Al-Salam-Chihara $q$-Laguerre polynomials. These include combinatorial descriptions of the polynomials, the moments, the orthogonality relation and a combinatorial interpretation of the linearization coefficients. I t is remarkable that the corresponding moment sequence appears also in the recent work of Postnikov and Williams on enumeration of totally positive Grassmann cells.
In 1997 Clarke et al. studied a $q$-analogue of Eulers difference table for $n!$ using a key bijection $Psi$ on symmetric groups. In this paper we extend their results to the wreath product of a cyclic group with the symmetric group. In particular we obtain a new mahonian statistic emph{fmaf} on wreath products. We also show that Foata and Hans two recent transformations on the symmetric groups provide indeed a factorization of $Psi$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا