ترغب بنشر مسار تعليمي؟ اضغط هنا

A tight relation between the size of the broad-line region (BLR) and optical luminosity has been established in about 50 active galactic nuclei studied through reverberation mapping of the broad Hbeta emission line. The R_blr-L relation arises from s imple photoionization considerations. Using a general relativistic model of an optically thick, geometrically thin accretion disk, we show that the ionizing luminosity jointly depends on black hole mass, accretion rate, and spin. The non-monotonic relation between the ionizing and optical luminosity gives rise to a complicated relation between the BLR size and the optical luminosity. We show that the reverberation lag of Hbeta to the varying continuum depends very sensitively to black hole spin. For retrograde spins, the disk is so cold that there is a deficit of ionizing photons in the BLR, resulting in shrinkage of the hydrogen ionization front with increasing optical luminosity, and hence shortened Hbeta lags. This effect is specially striking for luminous quasars undergoing retrograde accretion, manifesting in strong deviations from the canonical R_blr-L relation. This could lead to a method to estimate black hole spins of quasars and to study their cosmic evolution. At the same time, the small scatter of the observed R_blr-L relation for the current sample of reverberation-mapped active galaxies implies that the majority of these sources have rapidly spinning black holes.
128 - Pu Du , Jian-Min Wang , Chen Hu 2013
The metallicity of active galactic nuclei (AGNs), which can be measured by emission line ratios in their broad and narrow line regions (BLRs and NLRs), provides invaluable information about the physical connection between the different components of AGNs. From the archival databases of the International Ultraviolet Explorer, the Hubble Space Telescope and the Sloan Digital Sky Survey, we have assembled the largest sample available of AGNs which have adequate spectra in both the optical and ultraviolet bands to measure the narrow line ratio [N II]/H{alpha} and also, in the same objects, the broad-line N V/C IV ratio. These permit the measurement of the metallicities in the NLRs and BLRs in the same objects. We find that neither the BLR nor the NLR metallicity correlate with black hole masses or Eddington ratios, but there is a strong correlation between NLR and BLR metallicities. This metallicity correlation implies that outflows from BLRs carry metal-rich gas to NLRs at characteristic radial distances of ~ 1.0 kiloparsec. This chemical connection provides evidence for a kinetic feedback of the outflows to their hosts. Metals transported into the NLR enhance the cooling of the ISM in this region, leading to local star formation after the AGNs turn to narrow line LINERs. This post-AGN star formation is predicted to be observable as an excess continuum emission from the host galaxies in the near infrared and ultraviolet, which needs to be further explored.
68 - Jian-Min Wang 2009
Motivated by Genzel et al.s observations of high-redshift star-forming galaxies, containing clumpy and turbulent rings or disks, we build a set of equations describing the dynamical evolution of gaseous disks with inclusion of star formation and its feedback. Transport of angular momentum is due to turbulent viscosity induced by supernova explosions in the star formation region. Analytical solutions of the equations are found for the initial cases of a gaseous ring and the integrated form for a gaseous disk, respectively. For a ring with enough low viscosity, it evolves in a slow processes of gaseous diffusion and star formation near the initial radius. For a high viscosity, the ring rapidly diffuses in the early phase. The diffusion drives the ring into a region with a low viscosity and start the second phase undergoing pile-up of gas at a radius following the decreased viscosity torque. The third is a sharply deceasing phase because of star formation consumption of gas and efficient transportation of gas inward forming a stellar disk. We apply the model to two $zsim 2$ galaxies BX 482 and BzK 6004, and find that they are undergoing a decline in their star formation activity.
The fast variability of energetic TeV photons from the center of M87 has been detected, offering a new clue to estimate spins of supermassive black holes (SMBHs). We extend the study of Wang et al. (2008) by including all of general relativistic effe cts. We numerically solve the full set of relativistic hydrodynamical equations of the radiatively inefficient accretion flows (RIAFs) and then obtain the radiation fields around the black hole. The optical depth of the radiation fields to TeV photons due to pair productions are calculated in the Kerr metric. We find that the optical depth strongly depends on: (1) accretion rates as $tautevpropto dot{M}^{2.5-5.0}$; (2) black hole spins; and (3) location of the TeV source. Jointly considering the optical depth and the spectral energy distribution radiated from the RIAFs, the strong degeneration of the spin with the other free parameters in the RIAF model can be largely relaxed. We apply the present model to M87, wherein the RIAFs are expected to be at work, and find that the minimum specific angular momentum of the hole is $asim0.8$. The present methodology is applicable to M87-like sources with future detection of TeV emissions to constrain the spins of SMBHs.
92 - Jian-Min Wang 2008
The rapid TeV $gamma-$ray variability detected in the well-known nearby radio galaxy M87 implies an extremely compact emission region (5-10 Schwarzschild radii) near the horizon of the supermassive black hole in the galactic center. TeV photons are a ffected by dilution due to interaction with the radiation field of the advection-dominated accretion flow (ADAF) around the black hole, and can thus be used to probe the innermost regions around the black hole. We calculate the optical depth of the ADAF radiation field to the TeV photons and find it strongly depends on the spin of the black hole. We find that transparent radii of 10 TeV photons are of $5R_{rm S}$ and $13R_{rm S}$ for the maximally rotating and non-rotating black holes, respectively. With the observations, the calculated transparent radii strongly suggest the black hole is spinning fast in the galaxy. TeV photons could be used as a powerful diagnostic for estimating black hole spins in galaxies in the future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا