ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent experiments showed the distinct observations on the transition metal ditelluride NiTe$_2$ under pressure: one reported a superconducting phase transition at 12 GPa, whereas another observed a sign reversal of Hall resistivity at 16 GPa without the appearance of superconductivity. To clarify the controversial experimental phenomena, we have carried out first-principles electronic structure calculations on the compressed NiTe$_2$ with structure searching and optimization. Our calculations show that the pressure can transform NiTe$_2$ from a layered P-3m1 phase to a cubic Pa-3 phase at $sim$10 GPa. Meanwhile, both the P-3m1 and Pa-3 phases possess nontrivial topological properties. The calculated superconducting $T_c$s for these two phases based on the electron-phonon coupling theory both approach 0 K. Further magnetic transport calculations reveal that the sign of Hall resistance for the Pa-3 phase is sensitive to the pressure and the charge doping, in contrast to the case of the P-3m1 phase. Our theoretical predictions on the compressed NiTe$_2$ wait for careful experimental examinations.
A recent experiment reported the first rare-earth binary oxide superconductor LaO ($T_c $ $sim$ 5 K) with a rock-salt structure [K. Kaminaga et al., J. Am. Chem. Soc. 140, 6754 (2018)]. Correspondingly, the underlying superconducting mechanism in LaO needs theoretical elucidation. Based on first-principles calculations on the electronic structure, lattice dynamics, and electron-phonon coupling of LaO, we show that the superconducting pairing in LaO belongs to the conventional Bardeen-Cooper-Schrieffer (BCS) type. Remarkably, the electrons and phonons of the heavy La atoms, instead of those of the light O atoms, contribute most to the electron-phonon coupling. We further find that both the biaxial tensile strain and the pure electron doping can enhance the superconducting $T_c$ of LaO. With the synergistic effect of electron doping and tensile strain, the $T_c$ could be even higher, for example, 11.11 K at a doping of 0.2 electrons per formula unit and a tensile strain of $4%$. Moreover, our calculations show that the superconductivity in LaO thin film remains down to the trilayer thickness with a $T_c$ of 1.4 K.
The extremely large magnetoresistance (XMR) effect in nonmagnetic semimetals have attracted intensive attention recently. Here we propose an XMR candidate material SrPd based on first-principles electronic structure calculations in combination with a semi-classical model. The calculated carrier densities in SrPd indicate that there is a good electron-hole compensation, while the calculated intrinsic carrier mobilities are as high as 10$^5$ cm$^2$V$^{-1}$s$^{-1}$. There are only two doubly degenerate bands crossing the Fermi level for SrPd, thus a semi-classical two-band model is available for describing its transport properties. Accordingly, the magnetoresistance of SrPd under a magnetic field of $4$ Tesla is predicted to reach ${10^5} %$ at low temperature. Furthermore, the calculated topological invariant indicates that SrPd is topologically trivial. Our theoretical studies suggest that SrPd can serve as an ideal platform to examine the charge compensation mechanism of the XMR effect.
A recent experiment reported that robust superconductivity appears in NbTi alloys under ultrahigh pressures with an almost constant superconducting $T_c$ of ~19 K from 120 to 261.7 GPa [J. Guo et al., Adv. Mater. 31, 1807240 (2019)], which is very ra re among the known superconductors. We investigate the origin of this novel superconducting behavior in NbTi alloys based on density functional theory and density functional perturbation theory calculations. Our results indicate that the pressure tends to transform NbTi alloys from a random phase to a uniformly ordered crystal phase, and the exotic robust superconductivity of NbTi alloys can still be understood in the framework of BCS theory. The Nb element in NbTi alloys plays a dominant role in the superconductivity at low pressure, while the NbTi crystal with an alternative and uniform Nb and Ti atomic arrangement may be responsible for the stable superconductivity under high pressures. The robust superconducting transition temperature of NbTi under ultrahigh pressure can be explained by a synergistic effect of the enhanced phonon frequency, the modestly reduced total electron-phonon coupling, and the pressure-dependent screened Coulomb repulsion.
The extremely large magnetoresistance (XMR) material LaBi was reported to become superconducting under pressure accompanying with suppressed magnetoresistance. However, the underlying mechanism is unclear. By using first-principles electronic structu re calculations in combination with a semiclassical model, we have studied the electron-phonon coupling and magnetoresistance of LaBi in the pressure range from 0 to 18 GPa. Our calculations show that LaBi undergoes a structural phase transition from a face-centered cubic lattice to a primitive tetragonal lattice at $sim$7 GPa, verifying previous experimental results. Meanwhile, LaBi remains topologically nontrivial across the structural transition. Under all pressures that we have studied, the phonon-mediated mechanism based on the weak electron-phonon coupling cannot account for the observed superconductivity in LaBi, and the calculated magnetoresistance for LaBi does not show a suppression. The distinct difference between our calculations and experimental observations suggests either the existence of extra Bi impurities in the real LaBi compound or the possibility of other unknown mechanism.
Recent high pressure experiments discovered abnormal double-dome superconductivities in the newly-synthesized kagome materials $A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs), which also host abundant emergent quantum phenomena such as charge density wave (CDW), an omalous Hall effect, nontrivial topological property, etc. In this work, by using first-principles electronic structure calculations, we have studied the CDW state, superconductivity, and topological property in CsV$_3$Sb$_5$ under pressures ($<$ 50 GPa). Based on the electron-phonon coupling theory, our calculated superconducting $T_text{c}$s are consistent with the observed ones in the second superconducting dome at high pressure, but are much higher than the measured values at low pressure. The further calculations including the Hubbard U indicate that with modest electron-electron correlation the magnetism on the V atoms exists at low pressure and diminishes gradually at high pressure. We thus propose that the experimentally observed superconductivity in CsV$_3$Sb$_5$ at ambient/low pressures may still belong to the conventional Bardeen-Cooper-Schrieffer (BCS) type but is partially suppressed by the V magnetism, while the superconductivity under high pressure is fully conventional without invoking the magnetism. We also predict that there are a second weak CDW state and topological phase transitions in CsV$_3$Sb$_5$ under pressures. Our theoretical assertion calls for future experimental examination.
A recent experiment reported two new non-centrosymmetric superconductors NbIr$_{2}$B$_{2}$ and TaIr$_{2}$B$_{2}$ with respective superconducting transition temperatures of 7.2 K and 5.2 K and further suggested their superconductivity to be unconventi onal [K. Gornicka textit{et al}., Adv. Funct. Mater. 2007960 (2020)]. Here, based on first-principles calculations and symmetry analysis, we propose that $T$Ir$_{2}$B$_{2}$ ($T$=Nb, Ta) are topological Weyl metals in the normal state. In the absence of spin-orbit coupling (SOC), we find that NbIr$_{2}$B$_{2}$ has 12 Weyl points, and TaIr$_{2}$B$_{2}$ has 4 Weyl points, i.e. the minimum number under time-reversal symmetry; meanwhile, both of them have a nodal net composed of three nodal lines. In the presence of SOC, a nodal loop on the mirror plane evolves into two hourglass Weyl rings, along with the Weyl points, which are dictated by the nonsymmorphic glide mirror symmetry. Besides the rings, NbIr$_{2}$B$_{2}$ and TaIr$_{2}$B$_{2}$ have 16 and 20 pairs of Weyl points, respectively. The surface Fermi arcs are explicitly demonstrated. On the (110) surface of TaIr$_{2}$B$_{2}$, we find extremely long surface Fermi arcs ($sim$0.6 ${text{AA}}^{-1}$) located 1.4 meV below the Fermi level, which should be readily probed in experiment. Combined with the intrinsic superconductivity and the nontrivial bulk Fermi surfaces, $T$Ir$_{2}$B$_{2}$ may thus provide a very promising platform to explore the three-dimensional topological superconductivity.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
Based on the first-principles electronic structure calculations and the symmetry analysis, we predict that the topological superconductivity may occur on the surface of the LnPd$_{2}$Sn (Ln=Sc, Y, Lu) class of Heusler alloys. The calculated electroni c band structure and topological invariant demonstrate that the LnPd$_{2}$Sn family is topologically nontrivial. The further slab calculations show that the nontrivial topological surface states of LnPd$_{2}$Sn exist within the bulk band gap and meanwhile they cross the Fermi level. Considering that the LnPd$_{2}$Sn class of compounds were all found experimentally to be superconducting at low temperature, the surface topological superconductivity is likely to be generated via the proximity effect. Thus the LnPd$_{2}$Sn class of compounds shall be a promising platform for exploring novel topological superconductivity and handling Majorana zero modes.
We report the magneto-transport properties of CaAl$_4$ single crystals with $C2/m$ structure at low temperature. CaAl$_4$ exhibits large unsaturated magnetoresistance $sim$3000$%$ at 2.5 K and 14 T. The nonlinear Hall resistivity is observed, which i ndicates the multi-band feature. The first-principles calculations show the electron-hole compensation and the complex Fermi surface in CaAl$_4$, to which the two-band model with over-simplified carrier mobility cant completely apply. Evident quantum oscillations have been observed with B//c and B//ab configurations, from which the nontrivial Berry phase is extracted by the multi-band Lifshitz-Kosevich formula fitting. An electron-type quasi-2D Fermi surface is found by the angle-dependent Shubnikov-de Haas oscillations, de Haas-van Alphen oscillations and the first-principles calculations. The calculations also elucidate that CaAl$_4$ owns a Dirac nodal line type band structure around the $Gamma$ point in the $Z$-$Gamma$-$L$ plane, which is protected by the mirror symmetry as well as the space inversion and time reversal symmetries. Once the spin-orbit coupling is included, the crossed nodal line opens a negligible gap (less than 3 meV). The open-orbit topology is also found in the electron-type Fermi surfaces, which is believed to help enhance the magnetoresistance observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا