ترغب بنشر مسار تعليمي؟ اضغط هنا

Purpose: To introduce two novel learning-based motion artifact removal networks (LEARN) for the estimation of quantitative motion- and $B0$-inhomogeneity-corrected $R_2^ast$ maps from motion-corrupted multi-Gradient-Recalled Echo (mGRE) MRI data. M ethods: We train two convolutional neural networks (CNNs) to correct motion artifacts for high-quality estimation of quantitative $B0$-inhomogeneity-corrected $R_2^ast$ maps from mGRE sequences. The first CNN, LEARN-IMG, performs motion correction on complex mGRE images, to enable the subsequent computation of high-quality motion-free quantitative $R_2^ast$ (and any other mGRE-enabled) maps using the standard voxel-wise analysis or machine-learning-based analysis. The second CNN, LEARN-BIO, is trained to directly generate motion- and $B0$-inhomogeneity-corrected quantitative $R_2^ast$ maps from motion-corrupted magnitude-only mGRE images by taking advantage of the biophysical model describing the mGRE signal decay. We show that both CNNs trained on synthetic MR images are capable of suppressing motion artifacts while preserving details in the predicted quantitative $R_2^ast$ maps. Significant reduction of motion artifacts on experimental in vivo motion-corrupted data has also been achieved by using our trained models. Conclusion: Both LEARN-IMG and LEARN-BIO can enable the computation of high-quality motion- and $B0$-inhomogeneity-corrected $R_2^ast$ maps. LEARN-IMG performs motion correction on mGRE images and relies on the subsequent analysis for the estimation of $R_2^ast$ maps, while LEARN-BIO directly performs motion- and $B0$-inhomogeneity-corrected $R_2^ast$ estimation. Both LEARN-IMG and LEARN-BIO jointly process all the available gradient echoes, which enables them to exploit spatial patterns available in the data. The high computational speed of LEARN-BIO is an advantage that can lead to a broader clinical application.
Internet video delivery has undergone a tremendous explosion of growth over the past few years. However, the quality of video delivery system greatly depends on the Internet bandwidth. Deep Neural Networks (DNNs) are utilized to improve the quality o f video delivery recently. These methods divide a video into chunks, and stream LR video chunks and corresponding content-aware models to the client. The client runs the inference of models to super-resolve the LR chunks. Consequently, a large number of models are streamed in order to deliver a video. In this paper, we first carefully study the relation between models of different chunks, then we tactfully design a joint training framework along with the Content-aware Feature Modulation (CaFM) layer to compress these models for neural video delivery. {bf With our method, each video chunk only requires less than $1% $ of original parameters to be streamed, achieving even better SR performance.} We conduct extensive experiments across various SR backbones, video time length, and scaling factors to demonstrate the advantages of our method. Besides, our method can be also viewed as a new approach of video coding. Our primary experiments achieve better video quality compared with the commercial H.264 and H.265 standard under the same storage cost, showing the great potential of the proposed method. Code is available at:url{https://github.com/Neural-video-delivery/CaFM-Pytorch-ICCV2021}
The plug-and-play priors (PnP) and regularization by denoising (RED) methods have become widely used for solving inverse problems by leveraging pre-trained deep denoisers as image priors. While the empirical imaging performance and the theoretical co nvergence properties of these algorithms have been widely investigated, their recovery properties have not previously been theoretically analyzed. We address this gap by showing how to establish theoretical recovery guarantees for PnP/RED by assuming that the solution of these methods lies near the fixed-points of a deep neural network. We also present numerical results comparing the recovery performance of PnP/RED in compressive sensing against that of recent compressive sensing algorithms based on generative models. Our numerical results suggest that PnP with a pre-trained artifact removal network provides significantly better results compared to the existing state-of-the-art methods.
115 - Jiaming Liu , Min Fang , Hao Tian 2021
In this work, we present a systematic search for stellar groups in the Taurus field by applying DBSCAN algorithm to the data from Gaia DR2. We find 22 groups, consisting of 8 young groups (Groups 1-8) at ages of 2-4Myr and distances of ~130-170pc, 14 old groups (Groups 9-22) at ages of 8-49Myr and distances of ~110-210pc. We characterize the disk properties of group members and find 19 new disk-bearing stars, 8 of which are in the young groups and 11 others belong to the comparatively old groups at ages of 8-11 Myr. We characterize the accretion properties of the group members with H$alpha$ emission line in their LAMOST spectra, and discover one source in Group 10 at an age of 10 Myr which still shows accretion activity. We investigate the kinematic relations among the old groups, and find that Group 9 is kinematically related to the known Taurus members and exclude any kinematic relations between Groups 10-22 and the known Taurus members.
201 - Jiaming Liu , Yu Sun , Weijie Gan 2021
Deep unfolding networks have recently gained popularity in the context of solving imaging inverse problems. However, the computational and memory complexity of data-consistency layers within traditional deep unfolding networks scales with the number of measurements, limiting their applicability to large-scale imaging inverse problems. We propose SGD-Net as a new methodology for improving the efficiency of deep unfolding through stochastic approximations of the data-consistency layers. Our theoretical analysis shows that SGD-Net can be trained to approximate batch deep unfolding networks to an arbitrary precision. Our numerical results on intensity diffraction tomography and sparse-view computed tomography show that SGD-Net can match the performance of the batch network at a fraction of training and testing complexity.
Regularization by denoising (RED) is a broadly applicable framework for solving inverse problems by using priors specified as denoisers. While RED has been shown to provide state-of-the-art performance in a number of applications, existing RED algori thms require exact knowledge of the measurement operator characterizing the imaging system, limiting their applicability in problems where the measurement operator has parametric uncertainties. We propose a new method, called Calibrated RED (Cal-RED), that enables joint calibration of the measurement operator along with reconstruction of the unknown image. Cal-RED extends the traditional RED methodology to imaging problems that require the calibration of the measurement operator. We validate Cal-RED on the problem of image reconstruction in computerized tomography (CT) under perturbed projection angles. Our results corroborate the effectiveness of Cal-RED for joint calibration and reconstruction using pre-trained deep denoisers as image priors.
59 - Yu Sun , Jiaming Liu , Yiran Sun 2020
Regularization by denoising (RED) is a recently developed framework for solving inverse problems by integrating advanced denoisers as image priors. Recent work has shown its state-of-the-art performance when combined with pre-trained deep denoisers. However, current RED algorithms are inadequate for parallel processing on multicore systems. We address this issue by proposing a new asynchronous RED (ASYNC-RED) algorithm that enables asynchronous parallel processing of data, making it significantly faster than its serial counterparts for large-scale inverse problems. The computational complexity of ASYNC-RED is further reduced by using a random subset of measurements at every iteration. We present complete theoretical analysis of the algorithm by establishing its convergence under explicit assumptions on the data-fidelity and the denoiser. We validate ASYNC-RED on image recovery using pre-trained deep denoisers as priors.
101 - Xiaojian Xu , Yu Sun , Jiaming Liu 2020
Plug-and-play priors (PnP) is a methodology for regularized image reconstruction that specifies the prior through an image denoiser. While PnP algorithms are well understood for denoisers performing maximum a posteriori probability (MAP) estimation, they have not been analyzed for the minimum mean squared error (MMSE) denoisers. This letter addresses this gap by establishing the first theoretical convergence result for the iterative shrinkage/thresholding algorithm (ISTA) variant of PnP for MMSE denoisers. We show that the iterates produced by PnP-ISTA with an MMSE denoiser converge to a stationary point of some global cost function. We validate our analysis on sparse signal recovery in compressive sensing by comparing two types of denoisers, namely the exact MMSE denoiser and the approximate MMSE denoiser obtained by training a deep neural net.
131 - Jiaming Liu , Chao Liu , Min Fang 2020
In this work we report the discovery of 2 new stellar associations in close vicinity of the Sun at roughly 180 and 150 pc. These two associations, named as u Tau assoc and e Tau assoc, were detected based on their clustering in a multi-dimensional pa rameter space including ${alpha}$, ${delta}$, ${mu}_{alpha}$ , ${mu}_{delta}$ and ${pi}$ of Gaia. The fitting of pre-main-sequence model isochrones in their color-magnitude diagrams suggests that the two associations are of about 50 Myr old and the group members lower than ${sim}$0.8 $M_{odot}$ are at the stage of post-T Tauri.
230 - Xiaojian Xu , Jiaming Liu , Yu Sun 2020
Plug-and-play priors (PnP) is an image reconstruction framework that uses an image denoiser as an imaging prior. Unlike traditional regularized inversion, PnP does not require the prior to be expressible in the form of a regularization function. This flexibility enables PnP algorithms to exploit the most effective image denoisers, leading to their state-of-the-art performance in various imaging tasks. In this paper, we propose a new denoiser scaling technique to explicitly control the amount of PnP regularization. Traditionally, the performance of PnP algorithms is controlled via intrinsic parameters of the denoiser related to the noise variance. However, many powerful denoisers, such as the ones based on convolutional neural networks (CNNs), do not have tunable parameters that would allow controlling their influence within PnP. To address this issue, we introduce a scaling parameter that adjusts the magnitude of the denoiser input and output. We theoretical justify the denoiser scaling from the perspectives of proximal optimization, statistical estimation, and consensus equilibrium. Finally, we provide numerical experiments demonstrating the ability of denoiser scaling to systematically improve the performance of PnP for denoising CNN priors that do not have explicitly tunable parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا