ترغب بنشر مسار تعليمي؟ اضغط هنا

47 - Lei Yin , Jialin Gao 2020
The analytical structure of a static transverse component of polarization tensor in complex momentum plane is numerically studied, which is holographically determined by a Einstein-Maxwell theory in asymptotically $D=3+1$ dimensional Anti-de Sitter s pacetime. This strongly-coupled transverse polarization shows a pair of conjugate simple poles on the imaginary-axis at low temperature, which is different with the longitudinal component of the corresponding polarization and the counterpart in its weakly-coupled version.
Accurate temporal action proposals play an important role in detecting actions from untrimmed videos. The existing approaches have difficulties in capturing global contextual information and simultaneously localizing actions with different durations. To this end, we propose a Relation-aware pyramid Network (RapNet) to generate highly accurate temporal action proposals. In RapNet, a novel relation-aware module is introduced to exploit bi-directional long-range relations between local features for context distilling. This embedded module enhances the RapNet in terms of its multi-granularity temporal proposal generation ability, given predefined anchor boxes. We further introduce a two-stage adjustment scheme to refine the proposal boundaries and measure their confidence in containing an action with snippet-level actionness. Extensive experiments on the challenging ActivityNet and THUMOS14 benchmarks demonstrate our RapNet generates superior accurate proposals over the existing state-of-the-art methods.
85 - Jialin Gao , Tong He , Xi Zhou 2019
A collection of approaches based on graph convolutional networks have proven success in skeleton-based action recognition by exploring neighborhood information and dense dependencies between intra-frame joints. However, these approaches usually ignor e the spatial-temporal global context as well as the local relation between inter-frame and intra-frame. In this paper, we propose a focusing and diffusion mechanism to enhance graph convolutional networks by paying attention to the kinematic dependence of articulated human pose in a frame and their implicit dependencies over frames. In the focusing process, we introduce an attention module to learn a latent node over the intra-frame joints to convey spatial contextual information. In this way, the sparse connections between joints in a frame can be well captured, while the global context over the entire sequence is further captured by these hidden nodes with a bidirectional LSTM. In the diffusing process, the learned spatial-temporal contextual information is passed back to the spatial joints, leading to a bidirectional attentive graph convolutional network (BAGCN) that can facilitate skeleton-based action recognition. Extensive experiments on the challenging NTU RGB+D and Skeleton-Kinetics benchmarks demonstrate the efficacy of our approach.
In this technical report, we describe our solution to temporal action proposal (task 1) in ActivityNet Challenge 2019. First, we fine-tune a ResNet-50-C3D CNN on ActivityNet v1.3 based on Kinetics pretrained model to extract snippet-level video repre sentations and then we design a Relation-Aware Pyramid Network (RapNet) to generate temporal multiscale proposals with confidence score. After that, we employ a two-stage snippet-level boundary adjustment scheme to re-rank the order of generated proposals. Ensemble methods are also been used to improve the performance of our solution, which helps us achieve 2nd place.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا