ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism w ithin the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.
InfiniBand is widely used for low-latency, high-throughput cluster computing. Saving the state of the InfiniBand network as part of distributed checkpointing has been a long-standing challenge for researchers. Because of a lack of a solution, typical MPI implementations have included custom checkpoint-restart services that tear down the network, checkpoint each node as if the node were a standalone computer, and then re-connect the network again. We present the first example of transparent, system-initiated checkpoint-restart that directly supports InfiniBand. The new approach is independent of any particular Linux kernel, thus simplifying the current practice of using a kernel-based module, such as BLCR. This direct approach results in checkpoints that are found to be faster than with the use of a checkpoint-restart service. The generality of this approach is shown not only by checkpointing an MPI computation, but also a native UPC computation (Berkeley Unified Parallel C), which does not use MPI. Scalability is shown by checkpointing 2,048 MPI processes across 128 nodes (with 16 cores per node). In addition, a cost-effective debugging approach is also enabled, in which a checkpoint image from an InfiniBand-based production cluster is copied to a local Ethernet-based cluster, where it can be restarted and an interactive debugger can be attached to it. This work is based on a plugin that extends the DMTCP (Distributed MultiThreaded CheckPointing) checkpoint-restart package.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا