ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrastive self-supervised learning has largely narrowed the gap to supervised pre-training on ImageNet. However, its success highly relies on the object-centric priors of ImageNet, i.e., different augmented views of the same image correspond to the same object. Such a heavily curated constraint becomes immediately infeasible when pre-trained on more complex scene images with many objects. To overcome this limitation, we introduce Object-level Representation Learning (ORL), a new self-supervised learning framework towards scene images. Our key insight is to leverage image-level self-supervised pre-training as the prior to discover object-level semantic correspondence, thus realizing object-level representation learning from scene images. Extensive experiments on COCO show that ORL significantly improves the performance of self-supervised learning on scene images, even surpassing supervised ImageNet pre-training on several downstream tasks. Furthermore, ORL improves the downstream performance when more unlabeled scene images are available, demonstrating its great potential of harnessing unlabeled data in the wild. We hope our approach can motivate future research on more general-purpose unsupervised representation learning from scene data. Project page: https://www.mmlab-ntu.com/project/orl/.
We consider a general class of nonconvex-PL minimax problems in the cross-device federated learning setting. Although nonconvex-PL minimax problems have received a lot of interest in recent years, existing algorithms do not apply to the cross-device federated learning setting which is substantially different from conventional distributed settings and poses new challenges. To bridge this gap, we propose an algorithmic framework named FedSGDA. FedSGDA performs multiple local update steps on a subset of active clients in each round and leverages global gradient estimates to correct the bias in local update directions. By incorporating FedSGDA with two representative global gradient estimators, we obtain two specific algorithms. We establish convergence rates of the proposed algorithms by using novel potential functions. Experimental results on synthetic and real data corroborate our theory and demonstrate the effectiveness of our algorithms.
Coarse-to-fine models and cascade segmentation architectures are widely adopted to solve the problem of large scale variations in medical image segmentation. However, those methods have two primary limitations: the first-stage segmentation becomes a performance bottleneck; the lack of overall differentiability makes the training process of two stages asynchronous and inconsistent. In this paper, we propose a differentiable two-stage network architecture to tackle these problems. In the first stage, a localization network (L-Net) locates Regions of Interest (RoIs) in a detection fashion; in the second stage, a segmentation network (S-Net) performs fine segmentation on the recalibrated RoIs; a RoI recalibration module between L-Net and S-Net eliminating the inconsistencies. Experimental results on the public dataset show that our method outperforms state-of-the-art coarse-to-fine models with negligible computation overheads.
Graph matching finds the correspondence of nodes across two graphs and is a basic task in graph-based machine learning. Numerous existing methods match every node in one graph to one node in the other graph whereas two graphs usually overlap partiall y in many realworld{} applications. In this paper, a partial Gromov-Wasserstein learning framework is proposed for partially matching two graphs, which fuses the partial Gromov-Wasserstein distance and the partial Wasserstein distance as the objective and updates the partial transport map and the node embedding in an alternating fashion. The proposed framework transports a fraction of the probability mass and matches node pairs with high relative similarities across the two graphs. Incorporating an embedding learning method, heterogeneous graphs can also be matched. Numerical experiments on both synthetic and realworld{} graphs demonstrate that our framework can improve the F1 score by at least $20%$ and often much more.
Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since there are no pair annotations available. In this work, we present a rigorous and comprehensive study on inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. Through carefully-designed comparisons and analysis, we propose a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. Codes will be released at https://github.com/open-mmlab/OpenSelfSup.
Joint clustering and feature learning methods have shown remarkable performance in unsupervised representation learning. However, the training schedule alternating between feature clustering and network parameters update leads to unstable learning of visual representations. To overcome this challenge, we propose Online Deep Clustering (ODC) that performs clustering and network update simultaneously rather than alternatingly. Our key insight is that the cluster centroids should evolve steadily in keeping the classifier stably updated. Specifically, we design and maintain two dynamic memory modules, i.e., samples memory to store samples labels and features, and centroids memory for centroids evolution. We break down the abrupt global clustering into steady memory update and batch-wise label re-assignment. The process is integrated into network update iterations. In this way, labels and the network evolve shoulder-to-shoulder rather than alternatingly. Extensive experiments demonstrate that ODC stabilizes the training process and boosts the performance effectively. Code: https://github.com/open-mmlab/OpenSelfSup.
The search of direct-gap Si-based semiconductors is of great interest due to the potential application in many technologically relevant fields. This work examines the incorporation of He as a possible route to form a direct band gap in Si. Structure predictions and first-principles calculations have shown that He reacts with Si at high pressure, to form the stable compounds Si2He and Si3He. Both compounds have host-guest structures consisting of a channel-like Si host framework filled with He guest atoms. The Si frameworks in two compounds could be persisted to ambient pressure after removal of He, forming two pure Si allotropes. Both Si-He compounds and both Si allotropes exhibit direct or quasi-direct band gaps of 0.84-1.34 eV, close to the optimal value (~1.3 eV) for solar cell applications. Analysis shows that Si2He with an electric-dipole-transition allowed band gap possesses higher absorption capacity than diamond cubic Si, which makes it to be a promising candidate material for thin-film solar cell.
This paper focuses on projection-free methods for solving smooth Online Convex Optimization (OCO) problems. Existing projection-free methods either achieve suboptimal regret bounds or have high per-iteration computational costs. To fill this gap, two efficient projection-free online methods called ORGFW and MORGFW are proposed for solving stochastic and adversarial OCO problems, respectively. By employing a recursive gradient estimator, our methods achieve optimal regret bounds (up to a logarithmic factor) while possessing low per-iteration computational costs. Experimental results demonstrate the efficiency of the proposed methods compared to state-of-the-arts.
In this paper, we explore a general Aggregated Gradient Langevin Dynamics framework (AGLD) for the Markov Chain Monte Carlo (MCMC) sampling. We investigate the nonasymptotic convergence of AGLD with a unified analysis for different data accessing (e. g. random access, cyclic access and random reshuffle) and snapshot updating strategies, under convex and nonconvex settings respectively. It is the first time that bounds for I/O friendly strategies such as cyclic access and random reshuffle have been established in the MCMC literature. The theoretic results also indicate that methods in AGLD possess the merits of both the low per-iteration computational complexity and the short mixture time. Empirical studies demonstrate that our framework allows to derive novel schemes to generate high-quality samples for large-scale Bayesian posterior learning tasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا