ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid map representation, which consists of a modified generalized Voronoi Diagram (GVD)-based topological map and a grid-based metric map, is proposed to facilitate a new frontier-driven exploration strategy. Exploration frontiers are the regions on the boundary between open space and unexplored space. A mobile robot is able to construct its map by adding new space and moving to unvisited frontiers until the entire environment has been explored. The existing exploration methods suffer from low exploration efficiency in complex environments due to the lack of a systematical way to determine and assign optimal exploration command. Leveraging on the abstracted information from the GVD map (global) and the detected frontier in the local sliding window, a global-local exploration strategy is proposed to handle the exploration task in a hierarchical manner. The new exploration algorithm is able to create a modified tree structure to represent the environment while consolidating global frontier information during the self-exploration. The proposed method is verified in simulated environments, and then tested in real-world office environments as well.
Spiking Neural Networks (SNNs) use spatio-temporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation. Motivated by the success of deep learning, the study of Deep Spiking Neural Networks (DeepSNNs) provides promising directions for artificial intelligence applications. However, training of DeepSNNs is not straightforward because the well-studied error back-propagation (BP) algorithm is not directly applicable. In this paper, we first establish an understanding as to why error back-propagation does not work well in DeepSNNs. To address this problem, we propose a simple yet efficient Rectified Linear Postsynaptic Potential function (ReL-PSP) for spiking neurons and propose a Spike-Timing-Dependent Back-Propagation (STDBP) learning algorithm for DeepSNNs. In STDBP algorithm, the timing of individual spikes is used to convey information (temporal coding), and learning (back-propagation) is performed based on spike timing in an event-driven manner. Our experimental results show that the proposed learning algorithm achieves state-of-the-art classification accuracy in single spike time based learning algorithms of DeepSNNs. Furthermore, by utilizing the trained model parameters obtained from the proposed STDBP learning algorithm, we demonstrate the ultra-low-power inference operations on a recently proposed neuromorphic inference accelerator. Experimental results show that the neuromorphic hardware consumes 0.751~mW of the total power consumption and achieves a low latency of 47.71~ms to classify an image from the MNIST dataset. Overall, this work investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
Multiple reads of the same Flash memory cell with distinct word-line voltages provide enhanced precision for LDPC decoding. In this paper, the word-line voltages are optimized by maximizing the mutual information (MI) of the quantized channel. The en hanced precision from a few additional reads allows FER performance to approach that of full-precision soft information and enables an LDPC code to significantly outperform a BCH code. A constant-ratio constraint provides a significant simplification in the optimization with no noticeable loss in performance. For a well-designed LDPC code, the quantization that maximizes the mutual information also minimizes the frame error rate in our simulations. However, for an example LDPC code with a high error floor caused by small absorbing sets, the MMI quantization does not provide the lowest frame error rate. The best quantization in this case introduces more erasures than would be optimal for the channel MI in order to mitigate the absorbing sets of the poorly designed code. The paper also identifies a trade-off in LDPC code design when decoding is performed with multiple precision levels; the best code at one level of precision will typically not be the best code at a different level of precision.
This paper investigates the application of low-density parity-check (LDPC) codes to Flash memories. Multiple cell reads with distinct word-line voltages provide limited-precision soft information for the LDPC decoder. The values of the word-line volt ages (also called reference voltages) are optimized by maximizing the mutual information (MI) between the input and output of the multiple-read channel. Constraining the maximum mutual-information (MMI) quantization to enforce a constant-ratio constraint provides a significant simplification with no noticeable loss in performance. Our simulation results suggest that for a well-designed LDPC code, the quantization that maximizes the mutual information will also minimize the frame error rate. However, care must be taken to design the code to perform well in the quantized channel. An LDPC code designed for a full-precision Gaussian channel may perform poorly in the quantized setting. Our LDPC code designs provide an example where quantization increases the importance of absorbing sets thus changing how the LDPC code should be optimized. Simulation results show that small increases in precision enable the LDPC code to significantly outperform a BCH code with comparable rate and block length (but without the benefit of the soft information) over a range of frame error rates.
For LDPC codes operating over additive white Gaussian noise channels and decoded using message-passing decoders with limited precision, absorbing sets have been shown to be a key factor in error floor behavior. Focusing on this scenario, this paper i ntroduces the cycle consistency matrix (CCM) as a powerful analytical tool for characterizing and avoiding absorbing sets in separable circulant-based (SCB) LDPC codes. SCB codes include a wide variety of regular LDPC codes such as array-based LDPC codes as well as many common quasi-cyclic codes. As a consequence of its cycle structure, each potential absorbing set in an SCB LDPC code has a CCM, and an absorbing set can be present in an SCB LDPC code only if the associated CCM has a nontrivial null space. CCM-based analysis can determine the multiplicity of an absorbing set in an SCB code and CCM-based constructions avoid certain small absorbing sets completely. While these techniques can be applied to an SCB code of any rate, lower-rate SCB codes can usually avoid small absorbing sets because of their higher variable node degree. This paper focuses attention on the high-rate scenario in which the CCM constructions provide the most benefit. Simulation results demonstrate that under limited-precision decoding the new codes have steeper error-floor slopes and can provide one order of magnitude of improvement in the low FER region.
High-capacity NAND flash memories use multi-level cells (MLCs) to store multiple bits per cell and achieve high storage densities. Higher densities cause increased raw bit error rates (BERs), which demand powerful error correcting codes. Low-density parity-check (LDPC) codes are a well-known class of capacity-approaching codes in AWGN channels. However, LDPC codes traditionally use soft information while the flash read channel provides only hard information. Low resolution soft information may be obtained by performing multiple reads per cell with distinct word-line voltages. We select the values of these word-line voltages to maximize the mutual information between the input and output of the equivalent multiple-read channel under any specified noise model. Our results show that maximum mutual-information (MMI) quantization provides better soft information for LDPC decoding given the quantization level than the constant-pdf-ratio quantization approach. We also show that adjusting the LDPC code degree distribution for the quantized setting provides a significant performance improvement.
Certain binary asymmetric channels, such as Z-channels in which one of the two crossover probabilities is zero, demand optimal ones densities different from 50%. Some broadcast channels, such as broadcast binary symmetric channels (BBSC) where each c omponent channel is a binary symmetric channel, also require a non-uniform input distribution due to the superposition coding scheme, which is known to achieve the boundary of capacity region. This paper presents a systematic technique for designing nonlinear turbo codes that are able to support ones densities different from 50%. To demonstrate the effectiveness of our design technique, we design and simulate nonlinear turbo codes for the Z-channel and the BBSC. The best nonlinear turbo code is less than 0.02 bits from capacity.
This paper focuses on controlling the absorbing set spectrum for a class of regular LDPC codes known as separable, circulant-based (SCB) codes. For a specified circulant matrix, SCB codes all share a common mother matrix, examples of which are array- based LDPC codes and many common quasi-cyclic codes. SCB codes retain the standard properties of quasi-cyclic LDPC codes such as girth, code structure, and compatibility with efficient decoder implementations. In this paper, we define a cycle consistency matrix (CCM) for each absorbing set of interest in an SCB LDPC code. For an absorbing set to be present in an SCB LDPC code, the associated CCM must not be full columnrank. Our approach selects rows and columns from the SCB mother matrix to systematically eliminate dominant absorbing sets by forcing the associated CCMs to be full column-rank. We use the CCM approach to select rows from the SCB mother matrix to design SCB codes of column weight 5 that avoid all low-weight absorbing sets (4, 8), (5, 9), and (6, 8). Simulation results demonstrate that the newly designed code has a steeper error-floor slope and provides at least one order of magnitude of improvement in the low error rate region as compared to an elementary array-based code.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا