ترغب بنشر مسار تعليمي؟ اضغط هنا

Following Paper I we investigate the properties of atmospheres that form around small protoplanets embedded in a protoplanetary disc by conducting hydrodynamical simulations. These are now extended to three dimensions, employing a spherical grid cent red on the planet. Compression of gas is shown to reduce rotational motions. Contrasting the 2D case, no clear boundary demarcates bound atmospheric gas from disc material; instead, we find an open system where gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or, vice versa, when the disc gas rotates sub-Keplerian. The simulations do not converge to a time-independent solution; instead, the atmosphere is characterized by a time-varying velocity field. Of particular interest is the timescale to replenish the atmosphere by nebular gas, $t_mathrm{replenish}$. It is shown that the replenishment rate, $M_mathrm{atm}/t_mathrm{replenish}$, can be understood in terms of a modified Bondi accretion rate, $sim$$R_mathrm{Bondi}^2rho_mathrm{gas}v_mathrm{Bondi}$, where $v_mathrm{Bondi}$ is set by the Keplerian shear or the magnitude of the sub-Keplerian motion of the gas, whichever is larger. In the inner disk, the atmosphere of embedded protoplanets replenishes on a timescale that is shorter than the Kelvin-Helmholtz contraction (or cooling) timescale. As a result, atmospheric gas can no longer contract and the growth of these atmospheres terminates. Future work must confirm whether these findings continue to apply when the (thermodynamical) idealizations employed in this study are relaxed. But if shown to be broadly applicable, replenishment of atmospheric gas provides a natural explanation for the preponderance of gas-rich but rock-dominant planets like super-Earths and mini-Neptunes.
In the core accretion paradigm of planet formation, gas giants only form a massive atmosphere after their progenitors exceeded a threshold mass: the critical core mass. Most (exo)planets, being smaller and rock/ice-dominated, never crossed this line. Nevertheless, they were massive enough to attract substantial amounts of gas from the disc, while their atmospheres remained in pressure-equilibrium with the disc. Our goal is to characterise the hydrodynamical properties of the atmospheres of such embedded planets and their implication for their (long-term) evolution. In this paper -- the first in series -- we start to investigate the properties of an isothermal and inviscid flow past a small, embedded planet by conducting local, 2D hydrodynamical simulations. Using the PLUTO code we confirm that the flow is steady and bound. This steady outcome is most apparent for the log-polar grid (with the grid spacing proportional to the distance from the planet). For low-mass planets, Cartesian grids are somewhat less efficient as they have difficulty to follow the circular, large speeds in the deep atmosphere. Relating the amount of rotation to the gas fraction of the atmosphere, we find that more massive atmospheres rotate faster -- a finding consistent with Kelvins circulation theorem. Rotation therefore limits the amount of gas that planets can acquire from the nebula. Dependent on the Toomre-Q parameter of the circumstellar disc, the planets atmosphere will reach Keplerian rotation before self-gravity starts to become important.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا