ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential expansion in Unimodular Gravity is possible even in the absence of a constant potential; {em id est} for free fields. This is at variance with the case in General Relativity.
This paper is concerned with the structural stability of spherical horizons. By this we mean stability with respect to variations of the second member of the corresponding differential equations, corresponding to the inclusion of the contribution of operators quadratic in curvature. This we do both in the usual second order approach (in which the independent variable is the spacetime metric) and in the first order one (where the independent variables are the spacetime metric and the connection field). In second order, it is claimed that the generic solution in the asymptotic regime (large radius) can be matched not only with the usual solutions with horizons (like Schwarzschild-de Sitter) but also with a more generic (in the sense that it depends on more arbitrary parameters) horizonless family of solutions. It is however remarkable that these horizonless solutions are absent in the {em restricted} (that is, when the background connection is the metric one) first order approach.
We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime wit h radius given by the equation of motion of the auxiliary scalar field, ie, $S=frac{3}{kappa L}$. However, we see that the non-supersymmetric classical vacua of the unimodular theory are Minkowski and de Sitter spacetimes as well as anti-de Sitter spacetime with radius $l eq L$.
We formulate a unimodular N=1, d=4 supergravity theory off shell. We see that the infinitesimal Grassmann parameters defining the unimodular supergravity transformations are constrained and show that the conmutator of two infinitesinal unimodular sup ergravity transformations closes on transverse diffeomorphisms, Lorentz transformations and unimodular supergravity transformations. Along the way, we also show that the linearized theory is a supersymmetric theory of gravitons and gravitinos. We see that de Sitter and anti-de Sitter spacetimes are non-supersymmetric vacua of our unimodular supergravity theory.
The presence of gravity generalizes the notion of scale invariance to Weyl invariance, namely, invariance under local rescalings of the metric. In this work, we have computed the Weyl anomaly for various classically scale or Weyl invariant theories, making particular emphasis on the differences that arise when gravity is taken as a dynamical fluctuation instead of as a non-dynamical background field. We find that the value of the anomaly for the Weyl invariant coupling of scalar fields to gravity is sensitive to the dynamical character of the gravitational field, even when computed in constant curvature backgrounds. We also discuss to what extent those effects are potentially observable.
The most general lagrangian describing spin 2 particles in flat spacetime and containing operators up to (mass) dimension 6 is carefully analyzed, determining the precise conditions for it to be invariant under linearized (transverse) diffeomorphisms , linearized Weyl rescalings, and conformal transformations.
A definition of quasi-local energy in a gravitational field based upon its embedding into flat space is discussed. The outcome is not satisfactory from many points of view.
A ghost free massive deformation of unimodular gravity (UG), in the spirit of {em mimetic massive gravity}, is shown to exist. This construction avoids the no-go theorem for a Fierz-Pauli type of mass term in UG by giving up on Lorentz invariance. In our framework, the mimetic degree of freedom vanishes on-shell.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا