ترغب بنشر مسار تعليمي؟ اضغط هنا

Language-guided robots performing home and office tasks must navigate in and interact with the world. Grounding language instructions against visual observations and actions to take in an environment is an open challenge. We present Embodied BERT (Em BERT), a transformer-based model which can attend to high-dimensional, multi-modal inputs across long temporal horizons for language-conditioned task completion. Additionally, we bridge the gap between successful object-centric navigation models used for non-interactive agents and the language-guided visual task completion benchmark, ALFRED, by introducing object navigation targets for EmBERT training. We achieve competitive performance on the ALFRED benchmark, and EmBERT marks the first transformer-based model to successfully handle the long-horizon, dense, multi-modal histories of ALFRED, and the first ALFRED model to utilize object-centric navigation targets.
Seemingly simple natural language requests to a robot are generally underspecified, for example Can you bring me the wireless mouse? Flat images of candidate mice may not provide the discriminative information needed for wireless. The world, and obje cts in it, are not flat images but complex 3D shapes. If a human requests an object based on any of its basic properties, such as color, shape, or texture, robots should perform the necessary exploration to accomplish the task. In particular, while substantial effort and progress has been made on understanding explicitly visual attributes like color and category, comparatively little progress has been made on understanding language about shapes and contours. In this work, we introduce a novel reasoning task that targets both visual and non-visual language about 3D objects. Our new benchmark, ShapeNet Annotated with Referring Expressions (SNARE) requires a model to choose which of two objects is being referenced by a natural language description. We introduce several CLIP-based models for distinguishing objects and demonstrate that while recent advances in jointly modeling vision and language are useful for robotic language understanding, it is still the case that these image-based models are weaker at understanding the 3D nature of objects -- properties which play a key role in manipulation. We find that adding view estimation to language grounding models improves accuracy on both SNARE and when identifying objects referred to in language on a robot platform, but note that a large gap remains between these models and human performance.
Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates. Despite the incredible effectiveness of language processing models to tackle tasks after be ing trained on text alone, successful linguistic communication relies on a shared experience of the world. It is this shared experience that makes utterances meaningful. Natural language processing is a diverse field, and progress throughout its development has come from new representational theories, modeling techniques, data collection paradigms, and tasks. We posit that the present success of representation learning approaches trained on large, text-only corpora requires the parallel tradition of research on the broader physical and social context of language to address the deeper questions of communication.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا