ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the cluster mass-richness scaling relation calibrated by a weak lensing analysis of >18000 galaxy cluster candidates in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). Detected using the 3D-Matched-Filter cluster-finder of Mi lkeraitis et al., these cluster candidates span a wide range of masses, from the small group scale up to $sim10^{15} M_{odot}$, and redshifts 0.2 $lesssim zlesssim$ 0.9. The total significance of the stacked shear measurement amounts to 54$sigma$. We compare cluster masses determined using weak lensing shear and magnification, finding the measurements in individual richness bins to yield 1$sigma$ compatibility, but with magnification estimates biased low. This first direct mass comparison yields important insights for improving the systematics handling of future lensing magnification work. In addition, we confirm analyses that suggest cluster miscentring has an important effect on the observed 3D-MF halo profiles, and we quantify this by fitting for projected cluster centroid offsets, which are typically $sim$ 0.4 arcmin. We bin the cluster candidates as a function of redshift, finding similar cluster masses and richness across the full range up to $z sim$ 0.9. We measure the 3D-MF mass-richness scaling relation $M_{200} = M_0 (N_{200} / 20)^beta$. We find a normalization $M_0 sim (2.7^{+0.5}_{-0.4}) times 10^{13} M_{odot}$, and a logarithmic slope of $beta sim 1.4 pm 0.1$, both of which are in 1$sigma$ agreement with results from the magnification analysis. We find no evidence for a redshift-dependence of the normalization. The CFHTLenS 3D-MF cluster catalogue is now available at cfhtlens.org.
Gravitational lensing magnification is measured with a significance of 9.7 sigma on a large sample of galaxy clusters in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). This survey covers ~154 deg^2 and contains over 18,000 cluster cand idates at redshifts 0.2 <= z <= 0.9, detected using the 3D-Matched Filter cluster-finder of Milkeraitis et al. (2010). We fit composite-NFW models to the ensemble, accounting for cluster miscentering, source-lens redshift overlap, as well as nearby structure (the 2-halo term), and recover mass estimates of the cluster dark matter halos in range of ~10^13 M_sun to 2*10^14 M_sun. Cluster richness is measured for the entire sample, and we bin the clusters according to both richness and redshift. A mass-richness relation M_200 = M_0 (N_200 / 20)^beta is fit to the measurements. For two different cluster miscentering models we find consistent results for the normalization and slope, M_0 = (2.3 +/- 0.2)*10^13 M_sun, beta = 1.4 +/- 0.1 and M_0 = (2.2 +/- 0.2)*10^13 M_sun, beta = 1.5 +/- 0.1. We find that accounting for the full redshift distribution of lenses and sources is important, since any overlap can have an impact on mass estimates inferred from flux magnification.
We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9 sigma. Using X-ray selected groups in the COSMOS 1.64 deg^2 field, and high-redshift Lyman break galaxies as sources, w e measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.
We propose a new approach for measuring the mass profile and shape of groups and clusters of galaxies, which uses lensing magnification of distant background galaxies. The main advantage of lensing magnification is that, unlike lensing shear, it reli es on accurate photometric redshifts only and not galaxy shapes, thus enabling the study of the dark matter distribution with unresolved source galaxies. We present a feasibility study, using a real population of z > 2.5 Lyman Break Galaxies as source galaxies, and where, similar to galaxy-galaxy lensing, foreground lenses are stacked in order to increase the signal-to-noise. We find that there is an interesting new observational window for gravitational lensing as a probe of dark matter halos at high redshift, which does not require measurement of galaxy shapes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا