ترغب بنشر مسار تعليمي؟ اضغط هنا

189 - Jeremy Green 2014
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing re sources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.
We present early results from a lattice QCD study seeking a bound $H$-dibaryon using $N_f=2$ flavors of $O(a)$ improved Wilson fermions and a quenched strange quark. We compute a matrix of two-point functions using operators consisting of the two ind ependent local products of six positive-parity-projected quarks with the appropriate quantum numbers, which belong to the singlet and 27-plet irreducible representations of flavor SU(3). To expand this basis, we also independently vary the quark-field smearing, and apply a new scheme to reduce the noise caused by smearing. We then find the ground-state mass by solving the generalized eigenvalue problem. We show results from ensembles with pion masses 451 MeV and 1 GeV, and compare with other lattice calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا