ترغب بنشر مسار تعليمي؟ اضغط هنا

GaAs nanowires and GaAs/Fe3Si core/shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy. The surfaces of the original GaAs NWs are completely covered by ma gnetic Fe3Si exhibiting nanofacets and an enhanced surface roughness compared to the bare GaAs NWs. Shell growth at a substrate temperature of T{S} = 200 {deg}C leads to regular nanofacetted Fe3Si shells. These facets, which lead to thickness inhomogeneities of the shells, consist mainly of well pronounced Fe3Si(111) planes. The crystallographic orientation of core and shell coincide, i.e. they are pseudomorphic. The nanofacetted Fe3Si shells found in the present work are probably the result of the Vollmer-Weber island growth mode of Fe3Si on the {110} side facets of the GaAs NWs.
GaAs nanowires and GaAs-Fe3Si core-shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Ga droplets were formed on the o xide surface, and the semiconducting GaAs nanowires grew epitaxially via the vapor-liquid-solid mechanism as single-crystals from holes in the oxide film. We observed two stages of growth of the GaAs nanowires, first the regular growth and second the residual growth after the Ga supply was finished. The magnetic Fe3Si shells were deposited in an As-free chamber. They completely cover the GaAs cores although they consist of small grains. High-resolution TEM micrographs depict the differently oriented grains in the Fe3Si shells. Selected area diffraction of electrons and XRD gave further evidence that the shells are textured and not single crystals. Facetting of the shells was observed, which lead to thickness inhomogeneities of the shells.
Co2FeSi/GaAs(110) and Co2FeSi/GaAs(111)B hybrid structures were grown by molecular-beam epitaxy and characterized by transmission electron microscopy (TEM) and X-ray diffraction. The films contained inhomogeneous distributions of ordered L2_1 and B2 phases. The average stoichiometry was controlled by lattice parameter measurements, however diffusion processes lead to inhomogeneities of the atomic concentrations and the degradation of the interface, influencing long-range order. An average long-range order of 30-60% was measured by grazing-incidence X-ray diffraction, i.e. the as-grown Co2FeSi films were highly but not fully ordered. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were found using dark-field TEM images taken with superlattice reflections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا