ترغب بنشر مسار تعليمي؟ اضغط هنا

The metal-organic framework (MOF) MFU-4l containing Co(II) centers and Cl- ligands has recently shown promising redox activity. Aiming for further improved MOF catalysts for oxidation processes employing molecular oxygen we present a density-function al theory (DFT) based computational screening approach to identify promising metal center and ligand combinations within the MFU-4l structural family. Using the O2 binding energy as a descriptor for the redox property, we show that relative energetic trends in this descriptor can reliably be obtained at the hybrid functional DFT level and using small cluster (scorpionate-type complex) models. Within this efficient computational protocol we screen a range of metal center / ligand combinations and identify several candidate systems that offer more exothermic O2 binding than the original Co/Cl-based MFU-4l framework.
The adsorption geometry of 1,3,5-tris(4-mercaptophenyl)benzene (TMB) on Cu(111) is determined with high precision using two independent methods, experimentally by quantitative low energy electron diffraction (LEED-I(V)) and theoretically by dispersio n corrected density functional theory (DFT-vdW). Structural refinement using both methods consistently results in similar adsorption sites and geometries. Thereby a level of confidence is reached that allows deduction of subtle structural details such as molecular deformations or relaxations of copper substrate atoms.
We present a density-functional theory based Wulff construction of the equilibrium shape of RuO2 particles in an oxygen environment. The obtained intricate variations of the crystal habit with the oxygen chemical potential allow for a detailed discus sion of the dependence on the oxidizing pretreatment observed in recent powder catalyst studies. The analysis specifically indicates an incomplete particle shape equilibration in previously employed low temperature calcination. Equilibrated particles could be active CO oxidation catalysts with long-term stability in oxidizing feed and then represent an interesting alternative to the previously suggested core-shell concept.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا