ترغب بنشر مسار تعليمي؟ اضغط هنا

We present optical imaging and spectroscopy and HI imaging of the Virgo Cluster galaxy IC 3418, which is likely a smoking gun example of the transformation of a dwarf irregular into a dwarf elliptical galaxy by ram pressure stripping. IC 3418 has a s pectacular 17 kpc length UV-bright tail comprised of knots, head-tail, and linear stellar features. The only H-alpha emission arises from a few HII regions in the tail, the brightest of which are at the heads of head-tail UV sources whose tails point toward the galaxy (fireballs). Several of the elongated tail sources have H-alpha peaks outwardly offset by 80-150 pc from the UV peaks, suggesting that gas clumps continue to accelerate through ram pressure, leaving behind streams of newly formed stars which have decoupled from the gas. Absorption line strengths, measured from Keck DEIMOS spectra, together with UV colors, show star formation stopped 300+/-100 Myr ago in the main body, and a strong starburst occurred prior to quenching. While neither H-alpha nor HI emission are detected in the main body of the galaxy, we have detected 4x10^7 M_sun of HI from the tail with the VLA. The gas consumption timescale in the tail is relatively long, implying that most of the stripped gas does not form stars but joins the ICM. The velocities of tail HII regions, measured from Keck LRIS spectra, extend only a small fraction of the way to the cluster velocity, suggesting that star formation does not happen in more distant parts of the tail. Stars in the outer tail have velocities exceeding the escape speed, but some in the inner tail should fall back into the galaxy, forming halo streams. One likely fallback stream is identified.
We present a new deep optical study of a luminosity limited sample of nearby elliptical galaxies, attempting to observe the effects of gravitational interactions on the ISM of these objects. This study is motivated by recent observations of M86, a ne arby elliptical galaxy that shows possible evidence for gas heating through a recent gravitational interaction. The complete sample includes luminous ellipticals in clusters, groups and the field. For each of the galaxies we objectively derive a tidal parameter which measures the deviation of the stellar body from a smooth, relaxed model and find that 73% of them show tidal disturbance signatures in their stellar bodies. This is the first time that such an analysis is done on a statistically complete sample and it confirms that elliptical galaxies continue to grow and evolve through gravitational interactions even in the local Universe. Our study of ellipticals in a wide range of interaction stages, along with available ISM data will attempt to shed light on this possibly alternative mechanism for maintaining the observed ISM temperatures of elliptical galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا