ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Karl G. Jansky Very Large Array (VLA) observations of the CO ($J = 2 rightarrow 1$) line emission towards the $z = 6.419$ quasar SDSS J$114816.64+525150.3$ (J$1148+5251$). The molecular gas is found to be marginally resolved with a major a xis of $0.9$ (consistent with previous size measurements of the CO ($J = 7 rightarrow 6$) emission). We observe tentative evidence for extended line emission towards the south west on a scale of ~$1.4$, but this is only detected at $3.3sigma$ significance and should be confirmed. The position of the molecular emission region is in excellent agreement with previous detections of low frequency radio continuum emission as well as [C ii] line and thermal dust continuum emission. These CO ($J = 2 rightarrow 1$) observations provide an anchor for the low excitation part of the molecular line SED. We find no evidence for extended low excitation component, neither in the spectral line energy distribution nor the image. We fit a single kinetic gas temperature model of 50 K. We revisit the gas and dynamical masses in light of this new detection of a low order transition of CO, and confirm previous findings that there is no extended reservoir of cold molecular gas in J$1148+5251$, and that the source departs substantially from the low $z$ relationship between black hole mass and bulge mass. Hence, the characteristics of J$1148+5251$ at $z = 6.419$ are very similar to $z$~$2$ quasars, in the lack of a diffuse cold gas reservoir and kpc-size compactness of the star forming region.
229 - Alexandra Pope 2013
We explore the relationship between gas, dust and star formation in a sample of 12 ultra-luminous infrared galaxies (ULIRGs) at high redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectro scopy for 6 70 micron selected galaxies at z~1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nuclei (AGN) to the mid-IR luminosity and the star formation efficiency (SFE=LIR/LCO). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 micron selected ULIRGs which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high redshift ULIRGs, we further compare the PAH, IR and CO luminosities. We show that the ratio LPAH6.2/LIR decreases with increasing IR luminosity for both local and high redshift galaxies but the trend for high redshift galaxies is shifted to higher IR luminosities; the average LPAH6.2/LIR ratio at a given LIR is ~3 times higher at high redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission.The similar trends seen in the [CII] to molecular gas ratios in other studies suggests that PAH emission, like [CII], continues to be a good tracer of photodissociation regions even at high redshift. Together the CO, PAH and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high redshift galaxies.
72 - Nissim Kanekar 2013
We report a Plateau de Bure interferometer search for CII-158$mu$m emission from HCM6A, a lensed Lyman-$alpha$ emitter (LAE) at $z = 6.56$. Our non-detections of CII-158$mu$m line emission and 1.2mm radio continuum emission yield $3sigma$ limits of L $_{rm CII} < 6.4 times 10^7 times (Delta V/100 km s^{-1})^{1/2}$ L$_odot$ on the CII-158$mu$m line luminosity and S$_{rm 1.2mm} < 0.68$ mJy on the 1.2mm flux density. The local conversion factor between L$_{rm CII}$ and star formation rate (SFR) yields an SFR $< 4.7$ M$_odot$ yr$^{-1}$, $approx 2$ times lower than that inferred from the ultraviolet (UV) continuum, suggesting that the local factor may not be applicable in high-$z$ LAEs. The non-detection of 1.2mm continuum emission yields a total SFR $< 28$ M$_odot$/yr; any obscured star formation is thus within a factor of two of the visible star formation. Our best-fit model to the rest-frame UV/optical spectral energy distribution of HCM6A yields a stellar mass of $1.3 times 10^9$ M$_odot$ and an SFR of ~10 M$_odot$/yr, with negligible dust obscuration. We fortuitously detect CO J=3-2 emission from a $z=0.375$ galaxy in the foreground cluster Abell370, obtaining a CO line luminosity of L$^prime ({rm CO}) > (8.95 pm 0.79) times 10^8$ K km s$^{-1}$ pc$^2$, and a molecular gas mass of M$({rm H_2}) > (4.12 pm 0.36) times 10^9$ M$_odot$, for a CO-to-H$_2$ conversion factor of 4.6 M$_odot$ (K km s$^{-1}$ pc$^2$)$^{-1}$.
We present ALMA observations of the [C II] 158 micron fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars. We also report complementary observations of 250 GHz dust continuum and CO (6-5) line emission fr om the z=6.00 quasar SDSS J231038.88+185519.7. The ALMA observations were carried out in the extended array at 0.7 resolution. We have detected the line and dust continuum in all five objects. The derived [C II] line luminosities are 1.6x10^{9} to 8.8x10^{9} Lsun and the [C II]-to-FIR luminosity ratios are 3.0-5.6x10^{-4}, which is comparable to the values found in other high-redshift quasar-starburst systems and local ultra-luminous infrared galaxies. The sources are marginally resolved and the intrinsic source sizes (major axis FWHM) are constrained to be 0.3 to 0.6 (i.e., 1.7 to 3.5 kpc) for the [C II] line emission and 0.2 to 0.4 (i.e., 1.2 to 2.3 kpc) for the continuum. These measurements indicate that there is vigorous star formation over the central few kpc in the quasar host galaxies. The ALMA observations also constrain the dynamical properties of the atomic gas in the starburst nuclei. The intensity-weighted velocity maps of three sources show clear velocity gradients. Such velocity gradients are consistent with a rotating, gravitationally bound gas component, although they are not uniquely interpreted as such. Under the simplifying assumption of rotation, the implied dynamical masses within the [C II]-emitting regions are of order 10^{10} to 10^{11} Msun. Given these estimates, the mass ratios between the SMBHs and the spheroidal bulge are an order of magnitude higher than the mean value found in local spheroidal galaxies, which is in agreement with results from previous CO observations of high redshift quasars.
126 - Jeff Wagg 2009
We present the radio and X-ray properties of 1.2 mm MAMBO source candidates in a 1600 sq. arcmin field centered on the Abell 2125 galaxy cluster at z=0.247. The brightest, non-synchrotron mm source candidate in the field has a photometric redshift, z = 3.93^+1.11_-0.80, and is not detected in a 31 ks Chandra X-ray exposure. These findings are consistent with this object being an extremely dusty and luminous starburst galaxy at high-redshift, possibly the most luminous yet identified in any blank-field mm survey. The deep 1.4 GHz VLA imaging identifies counterparts for 83% of the 29 mm source candidates identified at >=4-sigma S(1.2mm) = 2.7 - 52.1 mJy, implying that the majority of these objects are likely to lie at z <~ 3.5. The median mm-to-radio wavelength photometric redshift of this radio-detected sample is z~2.2 (first and third quartiles of 1.7 and 3.0), consistent with the median redshift derived from optical spectroscopic surveys of the radio-detected subsample of bright submm galaxies (S(850um) > 5 mJy). Three mm-selected quasars are confirmed to be X-ray luminous in the high resolution Chandra imaging, while another mm source candidate with potential multiple radio counterparts is also detected in the X-ray regime. Both of these radio counterparts are positionally consistent with the mm source candidate. One counterpart is associated with an elliptical galaxy at z = 0.2425, but we believe that a second counterpart associated with a fainter optical source likely gives rise to the mm emission at z~1.
We report on interferometric imaging of the CO J=1--0 and J=3--2 line emission from the controversial QSO/galaxy pair HE 0450--2958. {it The detected CO J=1--0 line emission is found associated with the disturbed companion galaxy not the luminous QSO ,} and implies $rm M_{gal}(H_2)sim (1-2)times 10^{10} M_{odot}$, which is $ga 30% $ of the dynamical mass in its CO-luminous region. Fueled by this large gas reservoir this galaxy is the site of an intense starburst with $rm SFRsim 370 M_{odot} yr^{-1}$, placing it firmly on the upper gas-rich/star-forming end of Ultra Luminous Infrared Galaxies (ULIRGs, $rm L_{IR}>10^{12} L_{odot}$). This makes HE 0450--2958 the first case of extreme starburst and powerful QSO activity, intimately linked (triggered by a strong interaction) but not coincident. The lack of CO emission towards the QSO itself renews the controversy regarding its host galaxy by making a gas-rich spiral (the typical host of Narrow Line Seyfert~1 AGNs) less likely. Finally, given that HE 0450--2958 and similar IR-warm QSOs are considered typical ULIRG$to $(optically bright QSO) transition candidates, our results raise the possibility that some may simply be {it gas-rich/gas-poor (e.g. spiral/elliptical) galaxy interactions} which ``activate an optically bright unobscured QSO in the gas-poor galaxy, and a starburst in the gas-rich one. We argue that such interactions may have gone largely unnoticed even in the local Universe because the combination of tools necessary to disentagle the progenitors (high resolution and S/N optical {it and} CO imaging) became available only recently.
We present observations of four z>= SDSS quasars at 350 micron with the SHARC-II bolometer camera on the Caltech Submillimeter Observatory. These are among the deepest observations that have been made by SHARC-II at 350 micron, and three quasars are detected at >=3 sigma significance, greatly increasing the sample of 350 micron (corresponds to rest frame wavelengths of <60 micron at z>=5), detected high-redshift quasars. The derived rest frame far-infrared (FIR) emission in the three detected sources is about five to ten times stronger than that expected from the average SED of the local quasars given the same 1450A luminosity. Combining the previous submillimeter and millimeter observations at longer wavelengths, the temperatures of the FIR-emitting warm dust from the three quasar detections are estimated to be in the range of 39 to 52 K. Additionally, the FIR-to-radio SEDs of the three 350 micron detections are consistent with the emission from typical star forming galaxies. The FIR luminosities are ~10^{13} L_solar and the dust masses are >= 10^{8}M_solar. These results confirm that huge amounts of warm dust can exist in the host galaxies of optically bright quasars as early as z~6. The universe is so young at these epochs (~1 Gyr) that a rapid dust formation mechanism is required. We estimate the size of the FIR dust emission region to be about a few kpc, and further provide a comparison of the SEDs among different kinds of dust emitting sources to investigate the dominant dust heating mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا