ترغب بنشر مسار تعليمي؟ اضغط هنا

For autonomous vehicles, effective behavior planning is crucial to ensure safety of the ego car. In many urban scenarios, it is hard to create sufficiently general heuristic rules, especially for challenging scenarios that some new human drivers find difficult. In this work, we propose a behavior planning structure based on reinforcement learning (RL) which is capable of performing autonomous vehicle behavior planning with a hierarchical structure in simulated urban environments. Application of the hierarchical structure allows the various layers of the behavior planning system to be satisfied. Our algorithms can perform better than heuristic-rule-based methods for elective decisions such as when to turn left between vehicles approaching from the opposite direction or possible lane-change when approaching an intersection due to lane blockage or delay in front of the ego car. Such behavior is hard to evaluate as correct or incorrect, but for some aggressive expert human drivers handle such scenarios effectively and quickly. On the other hand, compared to traditional RL methods, our algorithm is more sample-efficient, due to the use of a hybrid reward mechanism and heuristic exploration during the training process. The results also show that the proposed method converges to an optimal policy faster than traditional RL methods.
Visualization tools for supervised learning have allowed users to interpret, introspect, and gain intuition for the successes and failures of their models. While reinforcement learning practitioners ask many of the same questions, existing tools are not applicable to the RL setting. In this work, we describe our initial attempt at constructing a prototype of these ideas, through identifying possible features that such a system should encapsulate. Our design is motivated by envisioning the system to be a platform on which to experiment with interpretable reinforcement learning.
We investigate the use of dimensionality reduction techniques for the classification of stellar spectra selected from the SDSS. Using local linear embedding (LLE), a technique that preserves the local (and possibly non-linear) structure within high d imensional data sets, we show that the majority of stellar spectra can be represented as a one dimensional sequence within a three dimensional space. The position along this sequence is highly correlated with spectral temperature. Deviations from this stellar locus are indicative of spectra with strong emission lines (including misclassified galaxies) or broad absorption lines (e.g. Carbon stars). Based on this analysis, we propose a hierarchical classification scheme using LLE that progressively identifies and classifies stellar spectra in a manner that requires no feature extraction and that can reproduce the classic MK classifications to an accuracy of one type.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا