ترغب بنشر مسار تعليمي؟ اضغط هنا

The event-plane method, which is widely used to analyze anisotropic flow in nucleus-nucleus collisions, is known to be biased by nonflow effects,especially at high $p_t$. Various methods (cumulants, Lee-Yang zeroes) have been proposed to eliminate no nflow effects, but their implementation is tedious, which has limited their application so far. In this paper, we show that the Lee-Yang-zeroes method can be recast in a form similar to the standard event-plane analysis. Nonflow correlations are strongly suppressed by using the information from the length of the flow vector, in addition to the event-plane angle. This opens the way to improved analyses of elliptic flow and azimuthally-sensitive observables at RHIC and LHC.
We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlatio n methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean elliptic flow in the participant plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.
We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlatio n methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v_{2,PP} elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v_{2,RP} in the reaction plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا