ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the influence of a Markovian environment on the dynamics of interacting spinful fermionic atoms in a lattice. In order to explore the physical phenomena occurring at short times, we develop a method based on a slave-spin representation of fermions which is amenable to the investigation of the dynamics of dissipative systems. We apply this approach to two different dissipative couplings which can occur in current experiments: a coupling via the local density and a coupling via the local double occupancy. We complement our study based on this novel method with results obtained using the adiabatic elimination technique and with an exact study of a two-site model. We uncover that the decoherence is slowed down by increasing either the interaction strength or the dissipative coupling (the Zeno effect). We also find, for the coupling to the local double occupancy, that the final steady state can sustain single-particle coherence.
We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power-law with distance with an exponent given by the adiabatic approximation. In contrast, for long distances, correlations decay algebraically with an exponent understood within the sudden quench approximation. This long distance regime is separated from an intermediate distance one by a generalized Lieb-Robinson criterion. At long times, in this intermediate regime, bosonization predicts that single-particle correlations decay following a stretched exponential. This latter regime is unconventional as, for one-dimensional interacting systems, the decay of single-particle correlations is usually algebraic within the Luttinger liquid picture. We develop here an intuitive understanding for the propagation of correlations, in terms of a generalized light-cone, applicable to a large variety of systems and quench forms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا