ترغب بنشر مسار تعليمي؟ اضغط هنا

SrTiO$_3$ is a promising $n$-type oxide semiconductor for thermoelectric energy conversion. Epitaxial thin films of SrTiO$_3$ doped with both La and oxygen vacancies have been synthesized by pulsed laser deposition (PLD). The thermoelectric and galva nomagnetic properties of these films have been characterized at temperatures ranging from 300 K to 900 K and are typical of a doped semiconductor. Thermopower values of double-doped films are comparable to previous studies of La doped single crystals at similar carrier concentrations. The highest thermoelectric figure of merit ($ZT$) was measured to be 0.28 at 873 K at a carrier concentration of $2.5times10^{21}$ cm$^{-3}$.
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic p lanes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar lao ~thin films grown on sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on lao ~we measure a built-in electric field across lao ~of 93 meV/AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in sto, illuminating a unique property of sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا