ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed source coding is the task of encoding an input in the absence of correlated side information that is only available to the decoder. Remarkably, Slepian and Wolf showed in 1973 that an encoder that has no access to the correlated side info rmation can asymptotically achieve the same compression rate as when the side information is available at both the encoder and the decoder. While there is significant prior work on this topic in information theory, practical distributed source coding has been limited to synthetic datasets and specific correlation structures. Here we present a general framework for lossy distributed source coding that is agnostic to the correlation structure and can scale to high dimensions. Rather than relying on hand-crafted source-modeling, our method utilizes a powerful conditional deep generative model to learn the distributed encoder and decoder. We evaluate our method on realistic high-dimensional datasets and show substantial improvements in distributed compression performance.
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods utilize mathematical formulations that represent the underlying physics, prior information and additional domain knowledge. Simple classical models are useful but sensitive to inaccuracies and may lead to poor performance when real systems display complex or dynamic behavior. On the other hand, purely data-driven approaches that are model-agnostic are becoming increasingly popular as datasets become abundant and the power of modern deep learning pipelines increases. Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance, especially for supervised problems. However, DNNs typically require massive amounts of data and immense computational resources, limiting their applicability for some signal processing scenarios. We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches. Such model-based deep learning methods exploit both partial domain knowledge, via mathematical structures designed for specific problems, as well as learning from limited data. In this article we survey the leading approaches for studying and designing model-based deep learning systems. We divide hybrid model-based/data-driven systems into categories based on their inference mechanism. We provide a comprehensive review of the leading approaches for combining model-based algorithms with deep learning in a systematic manner, along with concrete guidelines and detailed signal processing oriented examples from recent literature. Our aim is to facilitate the design and study of future systems on the intersection of signal processing and machine learning that incorporate the advantages of both domains.
We study image inverse problems with a normalizing flow prior. Our formulation views the solution as the maximum a posteriori estimate of the image conditioned on the measurements. This formulation allows us to use noise models with arbitrary depende ncies as well as non-linear forward operators. We empirically validate the efficacy of our method on various inverse problems, including compressed sensing with quantized measurements and denoising with highly structured noise patterns. We also present initial theoretical recovery guarantees for solving inverse problems with a flow prior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا