ترغب بنشر مسار تعليمي؟ اضغط هنا

First and second order transport coefficients are calculated for the strongly coupled N=4 SYM plasma coupled to massless fundamental matter in the Veneziano limit. The results, including among others the value of the bulk viscosity and some relaxatio n times, are presented at next-to-leading order in the flavor contribution. The bulk viscosity is found to saturate Buchels bound. This result is also captured by an effective single-scalar five-dimensional holographic dual in the Chamblin-Reall class and it is suggested to hold, in the limit of small deformations, for generic plasmas with gravity duals, whenever the leading conformality breaking effects are driven by marginally (ir)relevant operators. This proposal is then extended to other relations for hydrodynamic coefficients, which are conjectured to be universal for every non-conformal plasma with a dual Chamblin-Reall-like description. Our analysis extends to any strongly coupled gauge theory describing the low energy dynamics of Nc>>1 D3-branes at the tip of a generic Calabi-Yau cone. The fundamental fields are added by means of 1<<Nf<<Nc homogeneously smeared D7-branes.
We analyze the charge diffusion and conductivity in a Dp/Dq holographic setup that is dual to a supersymmetric Yang-Mills theory in p+1 dimensions with N_f<< N_c flavour degrees of freedom at finite temperature and nonvanishing U(1) baryon number che mical potential. We provide a new derivation of the results that generalize the membrane paradigm to the present context. We perform a numerical analysis in the particular case of the D3/D7 flavor system. The results obtained support the validity of the Einstein relation at finite chemical potential.
Using the AdS/CFT correspondence, we compute the spectral functions of thermal super Yang Mills at large N_c coupled to a small number of flavours of fundamental matter, N_f<<N_c, in the presence of a nonzero baryon density. The holographic dual of s uch a theory involves the addition of probe D7-branes with a background worldvolume gauge field switched on, embedded in the geometry of a stack of black D3-branes. We perform the analysis in the vector and scalar channels which become coupled for nonzero values of the spatial momentum and baryon density. In addition, we obtain the effect of the presence of net baryon charge on the photon production. We also extract the conductivity and find perfect agreement with the results derived by Karch and OBannon in a macroscopic setup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا