ترغب بنشر مسار تعليمي؟ اضغط هنا

In communication systems, there are many tasks, like modulation recognition, which rely on Deep Neural Networks (DNNs) models. However, these models have been shown to be susceptible to adversarial perturbations, namely imperceptible additive noise c rafted to induce misclassification. This raises questions about the security but also the general trust in model predictions. We propose to use adversarial training, which consists of fine-tuning the model with adversarial perturbations, to increase the robustness of automatic modulation recognition (AMC) models. We show that current state-of-the-art models benefit from adversarial training, which mitigates the robustness issues for some families of modulations. We use adversarial perturbations to visualize the features learned, and we found that in robust models the signal symbols are shifted towards the nearest classes in constellation space, like maximum likelihood methods. This confirms that robust models not only are more secure, but also more interpretable, building their decisions on signal statistics that are relevant to modulation recognition.
Given the rapid changes in telecommunication systems and their higher dependence on artificial intelligence, it is increasingly important to have models that can perform well under different, possibly adverse, conditions. Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications. However, in other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations, which consist of imperceptible crafted noise that when added to the data fools the model into misclassification. This puts into question the security of DNNs in communication tasks, and in particular in modulation recognition. We propose a novel framework to test the robustness of current state-of-the-art models where the adversarial perturbation strength is dependent on the signal strength and measured with the signal to perturbation ratio (SPR). We show that current state-of-the-art models are susceptible to these perturbations. In contrast to current research on the topic of image classification, modulation recognition allows us to have easily accessible insights on the usefulness of the features learned by DNNs by looking at the constellation space. When analyzing these vulnerable models we found that adversarial perturbations do not shift the symbols towards the nearest classes in constellation space. This shows that DNNs do not base their decisions on signal statistics that are important for the Bayes-optimal modulation recognition model, but spurious correlations in the training data. Our feature analysis and proposed framework can help in the task of finding better models for communication systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا