ترغب بنشر مسار تعليمي؟ اضغط هنا

We combine previously published interferometric and single-dish data of relatively nearby massive dense cores that are actively forming stars to test whether their `fragmentation level is controlled by turbulent or thermal support. We find no clear c orrelation between the fragmentation level and velocity dispersion, nor between the observed number of fragments and the number of fragments expected when the gravitationally unstable mass is calculated including various prescriptions for `turbulent support. On the other hand, the best correlation is found for the case of pure thermal Jeans fragmentation, for which we infer a core formation efficiency around 13 per cent, consistent with previous works. We conclude that the dominant factor determining the fragmentation level of star-forming massive dense cores at 0.1 pc scale seems to be thermal Jeans fragmentation.
Giant molecular clouds (GMCs) are the primary reservoirs of cold, star-forming molecular gas in the Milky Way and similar galaxies, and thus any understanding of star formation must encompass a model for GMC formation, evolution, and destruction. The se models are necessarily constrained by measurements of interstellar molecular and atomic gas, and the emergent, newborn stars. Both observations and theory have undergone great advances in recent years, the latter driven largely by improved numerical simulations, and the former by the advent of large-scale surveys with new telescopes and instruments. This chapter offers a thorough review of the current state of the field.
103 - Fabian Heitsch 2009
Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simu lations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We apply our results to observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignifcant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the $^{13}$CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا