ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters f or these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a $1 M_{rm Jup}$ planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a $2 M_{rm Jup}$ planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period $> 5$ yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.
The Exoplanet Orbit Database (EOD) compiles orbital, transit, host star, and other parameters of robustly detected exoplanets reported in the peer-reviewed literature. The EOD can be navigated through the Exoplanet Data Explorer (EDE) Plotter and Tab le, available on the World Wide Web at exoplanets.org. The EOD contains data for 1492 confirmed exoplanets as of July 2014. The EOD descends from a table in Butler et al. (2002) and the Catalog of Nearby Exoplanets (Butler et al. 2006), and the first complete documentation for the EOD and the EDE was presented in Wright et al. (2011). In this work, we describe our work since then. We have expanded the scope of the EOD to include secondary eclipse parameters, asymmetric uncertainties, and expanded the EDE to include the sample of over 3000 Kepler Objects of Interest (KOIs), and other real planets without good orbital parameters (such as many of those detected by microlensing and imaging). Users can download the latest version of the entire EOD as a single comma separated value file from the front page of exoplanets.org.
67 - Arpita Roy , Jason T. Wright , 2014
The lunar farside highlands problem refers to the curious and unexplained fact that the farside lunar crust is thicker, on average, than the nearside crust. Here we recognize the crucial influence of Earthshine, and propose that it naturally explains this hemispheric dichotomy. Since the accreting Moon rapidly achieved synchronous rotation, a surface and atmospheric thermal gradient was imposed by the proximity of the hot, post-Giant-Impact Earth. This gradient guided condensation of atmospheric and accreting material, preferentially depositing crust-forming refractories on the cooler farside, resulting in a primordial bulk chemical inhomogeneity that seeded the crustal asymmetry. Our model provides a causal solution to the lunar highlands problem: the thermal gradient created by Earthshine produced the chemical gradient responsible for the crust thickness dichotomy that defines the lunar highlands.
We report the radial-velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P~55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of ~7.5 years with a low eccentricity and an Msini of ~3.4 MJup. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS) effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost eight years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8-m Automatic Photoelectric Telescope (APT) and the Microvariability and Oscillations of Stars (MOST) satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at >>10sigma, and exclude any transit with an impact parameter b>0.951 at greater than 5sigma. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We found consistency between our orbital parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC.
We present a database of well determined orbital parameters of exoplanets. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form on the Web at http://exoplanets.org through the Exoplanets Data Explorer Table, and the data can be plotted and explored through the Exoplanets Data Explorer Plotter. We use the Data Explorer to generate publication-ready plots giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the selection different biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semi-major axis distribution from apparently singleton systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا