ترغب بنشر مسار تعليمي؟ اضغط هنا

We assess the science reach and technical feasibility of a satellite mission based on precision atomic sensors configured to detect gravitational radiation. Conceptual advances in the past three years indicate that a two-satellite constellation with science payloads consisting of atomic sensors based on laser cooled atomic Sr can achieve scientifically interesting gravitational wave strain sensitivities in a frequency band between the LISA and LIGO detectors, roughly 30 mHz to 10 Hz. The discovery potential of the proposed instrument ranges from from observation of new astrophysical sources (e.g. black hole and neutron star binaries) to searches for cosmological sources of stochastic gravitational radiation and searches for dark matter.
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass, a nd amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. This signal is ideally suited to a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to $Omega_text{GW} sim 10^{-14}$ for a two satellite space-based detector.
We present a method for determining the phase and contrast of a single shot of an atom interferometer. The application of a phase shear across the atom ensemble yields a spatially varying fringe pattern at each output port, which can be imaged direct ly. This method is broadly relevant to atom interferometric precision measurement, as we demonstrate in a 10 m Rb-87 atomic fountain by implementing an atom interferometric gyrocompass with 10 millidegree precision.
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multi-axis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a li ght-pulse atom interferometer for Rb-87 with 1.4 cm peak wavepacket separation and a duration of 2T = 2.3 seconds. The inferred acceleration sensitivity of each shot is 6.7 * 10^(-12) g, which improves on previous limits by more than two orders of magnitude. We also measure the Earths rotation rate with a precision of 200 nrad/s.
We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated over a ~30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of < 10^(-18) / Hz^(1/2) in the 50 mHz - 10 Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline (< 100 m) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.
The light-pulse atom interferometry method is reviewed. Applications of the method to inertial navigation and tests of the Equivalence Principle are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا