ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-reversal-invariant topological superconductor (TRITOPS) wires host Majorana Kramers pairs that have been predicted to mediate a fractional Josephson effect with $4pi$ periodicity in the superconducting phase difference. We explore the TRITOPS fr actional Josephson effect in the presence of time-dependent `local mixing perturbations that instantaneously preserve time-reversal symmetry. Specifically, we show that just as such couplings render braiding of Majorana Kramers pairs non-universal, the Josephson current becomes either aperiodic or $2pi$-periodic (depending on conditions that we quantify) unless the phase difference is swept sufficiently quickly. We further analyze topological superconductors with $mathcal{T}^2 = +1$ time-reversal symmetry and reveal a rich interplay between interactions and local mixing that can be experimentally probed in nanowire arrays.
Time crystals form when arbitrary physical states of a periodically driven system spontaneously break discrete time-translation symmetry. We introduce one-dimensional time-crystalline topological superconductors, for which time-translation symmetry b reaking and topological physics intertwine---yielding anomalous Floquet Majorana modes that are not possible in free-fermion systems. Such a phase exhibits a bulk magnetization that returns to its original form after two drive periods, together with Majorana end modes that recover their initial form only after four drive periods. We propose experimental implementations and detection schemes for this new state.
69 - Jun Ho Son , Jason Alicea 2019
Inspired by a recently constructed commuting-projector Hamiltonian for a two-dimensional (2D) time-reversal-invariant topological superconductor [Wang et al., Phys. Rev. B 98, 094502 (2018)], we introduce a commuting-projector model that describes an interacting yet exactly solvable 2D topological insulator. We explicitly show that both the gapped and gapless boundaries of our model are consistent with those of band-theoretic, weakly interacting topological insulators. Interestingly, on certain lattices our time-reversal-symmetric models also enjoy $mathcal{CP}$ symmetry, leading to intuitive interpretations of the bulk invariant for a $mathcal{CP}$-symmetric topological insulator upon putting the system on a Klein bottle. We also briefly discuss how these many-body invariants may be able to characterize models with only time-reversal symmetry.
We numerically assess model wave functions for the recently proposed particle-hole-symmetric Pfaffian (`PH-Pfaffian) topological order, a phase consistent with the recently reported thermal Hall conductance [Banerjee et al., Nature 559, 205 (2018)] a t the ever enigmatic $ u=5/2$ quantum-Hall plateau. We find that the most natural Moore-Read-inspired trial state for the PH-Pfaffian, when projected into the lowest Landau level, exhibits a remarkable numerical similarity on accessible system sizes with the corresponding (compressible) composite Fermi liquid. Consequently, this PH-Pfaffian trial state performs reasonably well energetically in the half-filled lowest Landau level, but is likely not a good starting point for understanding the $ u=5/2$ ground state. Our results suggest that the PH-Pfaffian model wave function either encodes anomalously weak $p$-wave pairing of composite fermions or fails to represent a gapped, incompressible phase altogether.
96 - Jun Ho Son , Jason Alicea 2018
We introduce a family of commuting-projector Hamiltonians whose degrees of freedom involve $mathbb{Z}_{3}$ parafermion zero modes residing in a parent fractional-quantum-Hall fluid. The two simplest models in this family emerge from dressing Ising-pa ramagnet and toric-code spin models with parafermions; we study their edge properties, anyonic excitations, and ground-state degeneracy. We show that the first model realizes a symmetry-enriched topological phase (SET) for which $mathbb{Z}_2$ spin-flip symmetry from the Ising paramagnet permutes the anyons. Interestingly, the interface between this SET and the parent quantum-Hall phase realizes symmetry-enforced $mathbb{Z}_3$ parafermion criticality with no fine-tuning required. The second model exhibits a non-Abelian phase that is consistent with $text{SU}(2)_{4}$ topological order, and can be accessed by gauging the $mathbb{Z}_{2}$ symmetry in the SET. Employing Levin-Wen string-net models with $mathbb{Z}_{2}$-graded structure, we generalize this picture to construct a large class of commuting-projector models for $mathbb{Z}_{2}$ SETs and non-Abelian topological orders exhibiting the same relation. Our construction provides the first commuting-projector-Hamiltonian realization of chiral bosonic non-Abelian topological order.
Composite fermions have played a seminal role in understanding the quantum Hall effect, particularly the formation of a compressible `composite Fermi liquid (CFL) at filling factor nu = 1/2. Here we suggest that in multi-layer systems interlayer Coul omb repulsion can similarly generate `metallic behavior of composite fermions between layers, even if the electrons remain insulating. Specifically, we propose that a quantum Hall bilayer with nu = 1/2 per layer at intermediate layer separation may host such an interlayer coherent CFL, driven by exciton condensation of composite fermions. This phase has a number of remarkable properties: the presence of `bonding and `antibonding composite Fermi seas, compressible behavior with respect to symmetric currents, and fractional quantum Hall behavior in the counterflow channel. Quantum oscillations associated with the Fermi seas give rise to a new series of incompressible states at fillings nu = p/[2(p pm 1)] per layer (p an integer), which is a bilayer analogue of the Jain sequence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا