ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra which are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pul sar spectra can be naturally explained by the thermal free-free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density and temperature of the absorbing media and the optical path of the line-of-sight across that. We have put specific emphasis on the case of the radio magnetar SGR J1745-2900 (also known as Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of Apr 2013 as due to the free-free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts towards the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behaviour of the binary pulsar B1259-63 and the spectral peculiarities of isolated pulsars.
We studied the radio spectrum of PSR B1259-63 in an unique binary with Be star LS 2883 and showed that the shape of the spectrum depends on the orbital phase. We proposed a qualitative model which explains this evolution. We considered two mechanisms that might influence the observed radio emission: free-free absorption and cyclotron resonance. Recently published results have revealed a new aspect in pulsar radio spectra. There were found objects with turnover at high frequencies in spectra, called gigahertz-peaked spectra (GPS) pulsars. Most of them adjoin such interesting environments as HII regions or compact pulsar wind nebulae (PWN). Thus, it is suggested that the turnover phenomenon is associated with the environment than being related intrinsically to the radio emission mechanism. Having noticed the apparent resemblance between the B1259-63 spectrum and the GPS, we suggest that the same mechanisms should be responsible for both cases. Therefore, the case of B1259-63 can be treated as a key factor to explain the GPS phenomenon observed for the solitary pulsars with interesting environments and also another types of spectra (e.g. with break).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا