ترغب بنشر مسار تعليمي؟ اضغط هنا

High-order harmonic generation in the presence of a chirped THz pulse is investigated numerically with a complete 3D non-adiabatic model. The assisting THz pulse illuminates the HHG gas cell laterally inducing quasi-phase-matching. We demonstrate tha t it is possible to compensate the phase mismatch during propagation and extend the macroscopic cutoff of a propagated strong IR pulse to the single-dipole cutoff. We obtain two orders of magnitude increase in the harmonic efficiency of cutoff harmonics ($approx$170 eV) using a THz pulse of constant wavelength, and a further factor of 3 enhancement when a chirped THz pulse is used.
The main effects of an intense THz pulse on gas high harmonic generation are studied via trajectory analysis on the single atom level. Spectral and temporal modifications to the generated radiation are highlighted.
We compare the observed strong saturation of the free carrier absorption in n-type semiconductors at 300 K in the terahertz frequency range when single-cycle pulses with intensities up to 150 MW/cm2 are used. In the case of germanium, a small increas e of the absorption occurs at intermediate THz pulse energies. The recovery of the free carrier absorption was monitored by time-resolved THz-pump/THz-probe measurements. At short probe delay times, the frequency response of germanium cannot be fitted by the Drude model. We attribute these unique phenomena of Ge to dynamical overpopulation of the high mobility gamma conduction band valley.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا