ترغب بنشر مسار تعليمي؟ اضغط هنا

A sunspot emanates from a growing pore or protospot. In order to trigger the formation of a penumbra, large inclinations at the outskirts of the protospot are necessary. The penumbra develops and establishes by colonising both umbral areas and granul ation. Evidence for a unique stable boundary value for the vertical component of the magnetic field strength, $B^{rm stable}_{rm ver}$, was found along the umbra-penumbra boundary of developed sunspots. We use broadband G-band images and spectropolarimetric GFPI/VTT data to study the evolution of and the vertical component of the magnetic field on a forming umbra-penumbra boundary. For comparison with stable sunspots, we also analyse the two maps observed by Hinode/SP on the same spot after the penumbra formed. The vertical component of the magnetic field, $B_{rm ver}$, at the umbra-penumbra boundary increases during penumbra formation owing to the incursion of the penumbra into umbral areas. After 2.5 hours, the penumbra reaches a stable state as shown by the GFPI data. At this stable stage, the simultaneous Hinode/SP observations show a $B_{rm ver}$ value comparable to that of umbra-penumbra boundaries of fully fledged sunspots. We confirm that the umbra-penumbra boundary, traditionally defined by an intensity threshold, is also characterised by a distinct canonical magnetic property, namely by $B^{rm stable}_{rm ver}$. During the penumbra formation process, the inner penumbra extends into regions where the umbra previously prevailed. Hence, in areas where $B_{rm ver} < B^{rm stable}_{rm ver}$, the magneto-convection mode operating in the umbra turns into a penumbral mode. Eventually, the inner penumbra boundary settles at $B^{rm stable}_{rm ver}$, which hints toward the role of $B_{rm ver}^{rm stable}$ as inhibitor of the penumbral mode of magneto-convection.
We present a method to study the penumbral fine structure using data obtained by the spectropolarimeter onboard HINODE. For the first time, the penumbral filaments can be considered as resolved in spectropolarimetric measurements. This enables us to use inversion codes with only one-component model atmospheres, and thus assign the obtained stratifications of plasma parameters directly to the penumbral fine structure. This approach is applied to the limb-side part of the penumbra in active region NOAA 10923. The preliminary results show a clear dependence of the plasma parameters on continuum intensity in the inner penumbra, i.e. weaker and horizontal magnetic field along with increased line-of-sight velocity are found in the low layers of the bright filaments. The results in the mid penumbra are ambiguous and future analyses are necessary to unveil the magnetic field structure and other plasma parameters there.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا