ترغب بنشر مسار تعليمي؟ اضغط هنا

We study circuit complexity for conformal field theory states in arbitrary dimensions. Our circuits start from a primary state and move along a unitary representation of the Lorentzian conformal group. We consider different choices of distance functi ons and explain how they can be understood in terms of the geometry of coadjoint orbits of the conformal group. Our analysis highlights a connection between the coadjoint orbits of the conformal group and timelike geodesics in anti-de Sitter spacetimes. We extend our method to study circuits in other symmetry groups using a group theoretic generalization of the notion of coherent states.
We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational acti on. The optimal circuit minimizes the gravitational action. This is a generalization of both the complexity equals volume conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic $Tbar T$, we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.
We discuss some general aspects of commutators of local operators in Lorentzian CFTs, which can be obtained from a suitable analytic continuation of the Euclidean operator product expansion (OPE). Commutators only make sense as distributions, and car e has to be taken to extract the right distribution from the OPE. We provide explicit computations in two and four-dimensional CFTs, focusing mainly on commutators of components of the stress-tensor. We rederive several familiar results, such as the canonical commutation relations of free field theory, the local form of the Poincare algebra, and the Virasoro algebra of two-dimensional CFT. We then consider commutators of light-ray operators built from the stress-tensor. Using simplifying features of the light sheet limit in four-dimensional CFT we provide a direct computation of the BMS algebra formed by a specific set of light-ray operators in theories with no light scalar conformal primaries. In four-dimensional CFT we define a new infinite set of light-ray operators constructed from the stress-tensor, which all have well-defined matrix elements. These are a direct generalization of the two-dimensional Virasoro light-ray operators that are obtained from a conformal embedding of Minkowski space in the Lorentzian cylinder. They obey Hermiticity conditions similar to their two-dimensional analogues, and also share the property that a semi-infinite subset annihilates the vacuum.
We investigate the occurrence of topologically protected waves in classical fluids confined on curved surfaces. Using a combination of topological band theory and real space analysis, we demonstrate the existence of a system-independent mechanism beh ind topological protection in two-dimensional passive and active fluids. This allows us to formulate an index theorem linking the number of modes, determined by the topology of Fourier space, to the real space topology of the surface on which they are hosted. With this framework in hand, we review two examples of topological waves in two-dimensional fluids, namely oceanic shallow-water waves propagating on the Earths rotating surface and momentum waves in active polar fluids spontaneously flocking on substrates endowed with a ${rm U}(1)$ isometry (e.g. surfaces of revolution). Our work suggests some simple rules to engineer topological modes on surfaces in passive and active soft matter systems.
One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in s tate A or state B?. In quantum mechanics, the latter type of measurements can be studied and optimized using the framework of quantum hypothesis testing. In many cases one can explicitly find the optimal measurement in the limit where one has simultaneous access to a large number $n$ of identical copies of the system, and estimate the expected error as $n$ becomes large. Interestingly, error estimates turn out to involve various quantum information theoretic quantities such as relative entropy, thereby giving these quantities operational meaning. In this paper we consider the application of quantum hypothesis testing to quantum many-body systems and quantum field theory. We review some of the necessary background material, and study in some detail the situation where the two states one wants to distinguish are parametrically close. The relevant error estimates involve quantities such as the variance of relative entropy, for which we prove a new inequality. We explore the optimal measurement strategy for spin chains and two-dimensional conformal field theory, focusing on the task of distinguishing reduced density matrices of subsystems. The optimal strategy turns out to be somewhat cumbersome to implement in practice, and we discuss a possible alternative strategy and the corresponding errors.
We propose an ansatz for OPE coefficients in chaotic conformal field theories which generalizes the Eigenstate Thermalization Hypothesis and describes any OPE coefficient involving heavy operators as a random variable with a Gaussian distribution. In two dimensions this ansatz enables us to compute higher moments of the OPE coefficients and analyse two and four-point functions of OPE coefficients, which we relate to genus-2 partition functions and their squares. We compare the results of our ansatz to solutions of Einstein gravity in AdS$_3$, including a Euclidean wormhole that connects two genus-2 surfaces. Our ansatz reproduces the non-perturbative correction of the wormhole, giving it a physical interpretation in terms of OPE statistics. We propose that calculations performed within the semi-classical low-energy gravitational theory are only sensitive to the random nature of OPE coefficients, which explains the apparent lack of factorization in products of partition functions.
We relate the Riemann curvature of a holographic spacetime to an entanglement property of the dual CFT state: the Berry curvature of its modular Hamiltonians. The modular Berry connection encodes the relative bases of nearby CFT subregions while its bulk dual, restricted to the code subspace, relates the edge-mode frames of the corresponding entanglement wedges. At leading order in 1/N and for sufficiently smooth HRRT surfaces, the modular Berry connection simply sews together the orthonormal coordinate systems covering neighborhoods of HRRT surfaces. This geometric perspective on entanglement is a promising new tool for connecting the dynamics of entanglement and gravitation.
We revisit the recent reformulation of the holographic prescription to compute entanglement entropy in terms of a convex optimization problem, introduced by Freedman and Headrick. According to it, the holographic entanglement entropy associated to a boundary region is given by the maximum flux of a bounded, divergenceless vector field, through the corresponding region. Our work leads to two main results: (i) We present a general algorithm that allows the construction of explicit thread configurations in cases where the minimal surface is known. We illustrate the method with simple examples: spheres and strips in vacuum AdS, and strips in a black brane geometry. Studying more generic bulk metrics, we uncover a sufficient set of conditions on the geometry and matter fields that must hold to be able to use our prescription. (ii) Based on the nesting property of holographic entanglement entropy, we develop a method to construct bit threads that maximize the flux through a given bulk region. As a byproduct, we are able to construct more general thread configurations by combining (i) and (ii) in multiple patches. We apply our methods to study bit threads which simultaneously compute the entanglement entropy and the entanglement of purification of mixed states and comment on their interpretation in terms of entanglement distillation. We also consider the case of disjoint regions for which we can explicitly construct the so-called multi-commodity flows and show that the monogamy property of mutual information can be easily illustrated from our constructions.
In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large $N$ limit, the difference between two precursors is a BRST exact and ghost-free term. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that this BRST ambiguity has the right number of parameters to explain the freedom to localize precursors within the boundary of an entanglement wedge order by order in the large $N$ expansion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا