ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new analytic estimate for the energy required to create a constant density core within a dark matter halo. Our new estimate, based on more realistic assumptions, leads to a required energy that is orders of magnitude lower than is claime d in earlier work. We define a core size based on the logarithmic slope of the dark matter density profile so that it is insensitive to the functional form used to fit observed data. The energy required to form a core depends sensitively on the radial scale over which dark matter within the cusp is redistributed within the halo. Simulations indicate that within a region of comparable size to the active star forming regions of the central galaxy that inhabits the halo, dark matter particles have their orbits radially increased by a factor of 2--3 during core formation. Thus the inner properties of the dark matter halo, such as halo concentration, and final core size, set the energy requirements. As a result, the energy cost increases slowly with halo mass as M$_{rm{h}}^{0.3-0.7}$ for core sizes $lesssim1$ kpc. We use the expected star formation history for a given dark matter halo mass to predict dwarf galaxy core sizes. We find that supernovae alone would create well over 4 kpc cores in $10^{10}$ M$_{odot}$ dwarf galaxies emph{if} 100% of the energy were transferred to dark matter particle orbits. We can directly constrain the efficiency factor by studying galaxies with known stellar content and core size, such as Fornax. We find that the efficiency of coupling between stellar feedback and dark matter orbital energy need only be at the 1% level or less to explain Fornaxs 1 kpc core.
We present a new model for the formation of stellar halos in dwarf galaxies. We demonstrate that the stars and star clusters that form naturally in the inner regions of dwarfs are expected to migrate from the gas rich, star forming centre to join the stellar spheroid. For dwarf galaxies, this process could be the dominant source of halo stars. The effect is caused by stellar feedback-driven bulk motions of dense gas which, by causing potential fluctuations in the inner regions of the halo, couple to all collisionless components. This effect has been demonstrated to generate cores in otherwise cuspy cold dark matter profiles and is particularly effective in dwarf galaxy haloes. It can build a stellar spheroid with larger ages and lower metallicities at greater radii without requiring an outside-in formation model. Globular cluster-type star clusters can be created in the galactic ISM and then migrate to the spheroid on 100thinspace Myr timescales. Once outside the inner regions they are less susceptible to tidal disruption and are thus long lived; clusters on wider orbits may be easily unbound from the dwarf to join the halo of a larger galaxy during a merger. A simulated dwarf galaxy ($text{M}_{vir}simeq10^{9}text{M}_{odot}$ at $z=5$) is used to examine this gravitational coupling to dark matter and stars.
A study of the IGM metal enrichment using a series of SPH simulations is presented, employing metal cooling and turbulent diffusion of metals and thermal energy. An adiabatic feedback mechanism was adopted where gas cooling was prevented to generate galactic winds without explicit wind particles. The simulations produced a cosmic star formation history (SFH) that is broadly consistent with observations until z $sim$ 0.5, and a steady evolution of the universal neutral hydrogen fraction ($Omega_{rm H I}$). At z=0, about 40% of the baryons are in the warm-hot intergalactic medium (WHIM), but most metals (80%-90%) are locked in stars. At higher z the proportion of metals in the IGM is higher due to more efficient loss from galaxies. The IGM metals primarily reside in the WHIM throughout cosmic history. The metallicity evolution of the gas inside galaxies is broadly consistent with observations, but the diffuse IGM is under enriched at z $sim$ 2.5. Galactic winds most efficiently enrich the IGM for halos in the intermediate mass range $10^{10}$M$_{sun}$ - $10^{11}$ M$_{sun}$. At the low mass end gas is prevented from accreting onto halos and has very low metallicities. At the high mass end, the fraction of halo baryons escaped as winds declines along with the decline of stellar mass fraction of the galaxies. This is likely because of the decrease in star formation activity and in wind escape efficiency. Metals enhance cooling which allows WHIM gas to cool onto galaxies and increases star formation. Metal diffusion allows winds to mix prior to escape, decreasing the IGM metal content in favour of gas within galactic halos and star forming gas. Diffusion significantly increases the amount of gas with low metallicities and changes the density-metallicity relation.
71 - Sijing Shen 2009
The formation of brown dwarfs (BDs) due to the fragmentation of proto-stellar disks undergoing pairwise encounters was investigated. High resolution allowed the use of realistic initial disk models where both the vertical structure and the local Jean s mass were resolved. The results show that objects with masses ranging from giant planets to low mass stars can form during such encounters from initially stable disks. The parameter space of initial spin-orbit orientations and the azimuthal angles for each disk was explored. An upper limit on the initial Toomre Q value of ~2 was found for fragmentation to occur. Depending on the initial configuration, shocks, tidal-tail structures and mass inflows were responsible for the condensation of disk gas. Retrograde disks were generally more likely to fragment. When the interaction timescale was significantly shorter than the disks dynamical timescales, the proto-stellar disks tended to be truncated without forming objects. The newly-formed objects had masses ranging from 0.9 to 127 Jupiter masses, with the majority in the BD regime. They often resided in star-BD multiples and in some cases also formed hierarchical orbiting systems. Most of them had large angular momenta and highly flattened, disk-like shapes. The objects had radii ranging from 0.1 to 10 AU. The disk gas was assumed to be locally isothermal, appropriate for the short cooling times in extended proto-stellar disks, but not for condensed objects. An additional case with explicit cooling that reduced to zero for optically thick gas was simulated to test the extremes of cooling effectiveness and it was still possible to form objects in this case. Detailed radiative transfer is expected to lengthen the internal evolution timescale for these objects, but not to alter our basic results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا