ترغب بنشر مسار تعليمي؟ اضغط هنا

212 - James S. Bolton 2011
The quasar ULAS J1120+0641 at redshift z=7.085 has a highly ionised near zone which is smaller than those around quasars of similar luminosity at z~6. The spectrum also exhibits evidence for a damping wing extending redward of the systemic Lya redshi ft. We use radiative transfer simulations in a cosmological context to investigate the implications for the ionisation state of the inhomogeneous IGM surrounding this quasar. Our simulations show that the transmission profile is consistent with an IGM in the vicinity of the quasar with a volume averaged HI fraction of f_HI>0.1 and that ULAS J1120+0641 has been bright for 10^6--10^7 yr. The observed spectrum is also consistent with smaller IGM neutral fractions, f_HI ~ 10^-3--10-4, if a damped Lya system in an otherwise highly ionised IGM lies within 5 proper Mpc of the quasar. This is, however, predicted to occur in only ~5 per cent of our simulated sight-lines for a bright phase of 10^6--10^7 yr. Unless ULAS J1120+0641 grows during a previous optically obscured phase, the low age inferred for the quasar adds to the theoretical challenge of forming a 2x10^9 M_sol black hole at this high redshift.
85 - James S. Bolton 2009
We use a combination of analytic and numerical arguments to consider the impact of quasar photo-heating during HeII reionisation on the thermal evolution of the intergalactic medium (IGM). We demonstrate that rapid (Delta z< 0.1-0.2), strong (Delta T > 10^4 K) photo-heating is difficult to achieve across the entire IGM unless quasar spectra are significantly harder than implied by current observational constraints. Although filtering of intrinsic quasar radiation through dense regions in the IGM does increase the mean excess energy per HeII photo-ionisation, it also weakens the radiation intensity and lowers the photo-ionisation rate, preventing rapid heating over time intervals shorter than the local photo-ionisation timescale. Moreover, the hard photons responsible for the strongest heating are more likely to deposit their energy inside dense clumps. The abundance of such clumps is, however, uncertain and model-dependent, leading to a fairly large uncertainty in the photo-heating rates. Nevertheless, although some of the IGM may be exposed to a hardened and weakened ionising background for long periods, most of the IGM must instead be reionised by the more abundant, softer photons and with accordingly modest heating rates (Delta T < 10^4 K). The repeated ionisation of fossil quasar HeIII regions does not increase the net heating because the recombination times in these regions typically exceed the IGM cooling times and the average time lag between successive rounds of quasar activity. Detailed line-of-sight radiative transfer simulations confirm these expectations and predict a rich thermal structure in the IGM during HeII reionisation. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا