ترغب بنشر مسار تعليمي؟ اضغط هنا

143 - James Q. Quach , Chun-Hsu Su , 2013
Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs constituent elements are commensurate w ith the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.
Quantum graphity offers the intriguing notion that space emerges in the low energy states of the spatial degrees of freedom of a dynamical lattice. Here we investigate metastable domain structures which are likely to exist in the low energy phase of lattice evolution. Through an annealing process we explore the formation of metastable defects at domain boundaries and the effects of domain structures on the propagation of bosons. We show that these structures should have observable background independent consequences including scattering, double imaging, and gravitational lensing-like effects.
By coupling controllable quantum systems into larger structures we introduce the concept of a quantum metamaterial. Conventional meta-materials represent one of the most important frontiers in optical design, with applications in diverse fields rangi ng from medicine to aerospace. Up until now however, metamaterials have themselves been classical structures and interact only with the classical properties of light. Here we describe a class of dynamic metamaterials, based on the quantum properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable, and operate fundamentally at the quantum level. We show how this new class of metamaterial could be used to create a reconfigurable quantum superlens possessing a negative index gradient for single photon imaging. With the inherent features of quantum superposition and entanglement of metamaterial properties, this new class of dynamic quantum metamaterial, opens a new vista for quantum science and technology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا