ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational wave science is on the verge of direct observation of the waves predicted by Einsteins General Theory of Relativity and opening the exciting new field of gravitational wave astronomy. In the coming decades, ultra-sensitive arrays of gro und-based instruments and complementary spaced-based instruments will observe the gravitational wave sky, inevitably discovering entirely unexpected phenomena while providing new insight into many of the most profound astrophysical phenomena known. in July 2007 the Gravitational Wave International Committee (GWIC) initiated the development of a strategic roadmap for the field of gravitational wave science with a 30-year horizon. The goal of this roadmap is to serve the international gravitational wave community and its stakeholders as a tool for the development of capabilities and facilities needed to address the exciting scientific opportunities on the intermediate and long-term horizons.
118 - William B. Sparks 2009
The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a gener ic property of all biochemical life. Due to the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا