ترغب بنشر مسار تعليمي؟ اضغط هنا

A subset of ultraluminous X-ray sources (those with luminosities < 10^40 erg/s) are thought to be powered by the accretion of gas onto black holes with masses of ~5-20 M_solar, probably via an accretion disc. The X-ray and radio emission are coupled in such Galactic sources, with the radio emission originating in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium precludes determining the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source whose peak luminosity can exceed 10^39 erg/s in the nearby galaxy, M31. The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a stellar mass black hole. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.
We present simultaneous dual-frequency radio observations of Cygnus X-3 during a phase of low-level activity. We constrain the minimum variability timescale to be 20 minutes at 43 GHz and 30 minutes at 15 GHz, implying source sizes of 2 to 4 AU. We d etect polarized emission at a level of a few per cent at 43 GHz which varies with the total intensity. The delay of approximately 10 minutes between the peaks of the flares at the two frequencies is seen to decrease with time, and we find that synchrotron self-absorption and free-free absorption by entrained thermal material play a larger role in determining the opacity than absorption in the stellar wind of the companion. A shock-in-jet model gives a good fit to the lightcurves at all frequencies, demonstrating that this mechanism, which has previously been used to explain the brighter, longer-lived giant outbursts in this source, is also applicable to these low-level flaring events. Assembling the data from outbursts spanning over two orders of magnitude in flux density shows evidence for a strong correlation between the peak brightness of an event, and the timescale and frequency at which this is attained. Brighter flares evolve on longer timescales and peak at lower frequencies. Analysis of the fitted model parameters suggests that brighter outbursts are due to shocks forming further downstream in the jet, with an increased electron normalisation and magnetic field strength both playing a role in setting the strength of the outburst.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا