ترغب بنشر مسار تعليمي؟ اضغط هنا

Consider an electron drifting in a gas toward a collection electrode. A common misconception is that the electron produces a detectable signal only upon arrival at the electrode. In fact, the situation is quite the opposite. The electron induces a de tectable current in the electrode as soon as it starts moving through the gas. This induced current vanishes when the electron arrives at the plate. To illustrate this phenomenon experimentally, we use a gas-filled parallel plate ionization chamber and a collimated $^{241}$Am alpha source, which produces a track of a fixed number of ionization electrons at a constant distance from the collection electrode. We find that the detected signal from the ionization chamber grows with the electron drift distance, as predicted by the model of charge induction, and in conflict with the idea that electrons are detectable upon arrival at the collection plate.
A number of proposals have been put forward to account for the observed accelerating expansion of the Universe through modifications of gravity. One specific scenario, Dvali-Gabadadze-Porrati (DGP) gravity, gives rise to a potentially observable anom aly in the solar system: all planets would exhibit a common anomalous precession, dw/dt, in excess of the prediction of General Relativity. We have used the Planetary Ephemeris Program (PEP) along with planetary radar and radio tracking data to set a constraint of |dw/dt| < 0.02 arcseconds per century on the presence of any such common precession. This sensitivity falls short of that needed to detect the estimated universal precession of |dw/dt| = 5e-4 arcseconds per century expected in the DGP scenario. We discuss the fact that ranging data between objects that orbit in a common plane cannot constrain the DGP scenario. It is only through the relative inclinations of the planetary orbital planes that solar system ranging data have sensitivity to the DGP-like effect of universal precession. In addition, we illustrate the importance of performing a numerical evaluation of the sensitivity of the data set and model to any perturbative precession.
We present constraints on violations of Lorentz Invariance based on Lunar Laser Ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies, and is currently accurate to a few centimeters (parts in $10^{11}$ of the total distance). By analyzing archival LLR data under the Standard-Model Extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz-violation. We found no evidence for Lorentz violation at the $10^{-6}$ to $10^{-11}$ level in these parameters.
We present the first constraints on pure-gravity sector Standard-Model Extension (SME) parameters using Lunar Laser Ranging (LLR). LLR measures the round trip travel time of light between the Earth and the Moon. With 34+ years of LLR data, we have co nstrained six independent linear combinations of SME parameters at the level of $10^{-6}$ to $10^{-11}$. There is no evidence for Lorentz violation in the LLR dataset.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا