ترغب بنشر مسار تعليمي؟ اضغط هنا

A recent Google study [Phys. Rev. X, 6:031015 (2016)] compared a D-Wave 2X quantum processing unit (QPU) to two classical Monte Carlo algorithms: simulated annealing (SA) and quantum Monte Carlo (QMC). The study showed the D-Wave 2X to be up to 100 m illion times faster than the classical algorithms. The Google inputs are designed to demonstrate the value of collective multiqubit tunneling, a resource available to D-Wave QPUs but not to simulated annealing. But the computational hardness in these inputs is highly localized in gadgets, with only a small amount of complexity coming from global interactions, meaning that the relevance to real-world problems is limited. In this study we provide a new synthetic problem class that addresses the limitations of the Google inputs while retaining their strengths. We use simple clusters instead of more complex gadgets and more emphasis is placed on creating computational hardness through frustrated global interactions like those seen in interesting real-world inputs. The logical problems used to generate these inputs can be solved in polynomial time [J. Phys. A, 15:10 (1982)]. However, for general heuristic algorithms that are unaware of the planted problem class, the frustration creates meaningful difficulty in a controlled environment ideal for study. We use these inputs to evaluate the new 2000-qubit D-Wave QPU. We include the HFS algorithm---the best performer in a broader analysis of Google inputs---and we include state-of-the-art GPU implementations of SA and QMC. The D-Wave QPU solidly outperforms the software solvers: when we consider pure annealing time (computation time), the D-Wave QPU reaches ground states up to 2600 times faster than the competition. In the task of zero-temperature Boltzmann sampling from challenging multimodal inputs, the D-Wave QPU holds a similar advantage as quantum sampling bias does not seem significant.
We provide an O(log log OPT)-approximation algorithm for the problem of guarding a simple polygon with guards on the perimeter. We first design a polynomial-time algorithm for building epsilon-nets of size O(1/epsilon log log 1/epsilon) for the insta nces of Hitting Set associated with our guarding problem. We then apply the technique of Bronnimann and Goodrich to build an approximation algorithm from this epsilon-net finder. Along with a simple polygon P, our algorithm takes as input a finite set of potential guard locations that must include the polygons vertices. If a finite set of potential guard locations is not specified, e.g. when guards may be placed anywhere on the perimeter, we use a known discretization technique at the cost of making the algorithms running time potentially linear in the ratio between the longest and shortest distances between vertices. Our algorithm is the first to improve upon O(log OPT)-approximation algorithms that use generic net finders for set systems of finite VC-dimension.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا