ترغب بنشر مسار تعليمي؟ اضغط هنا

202 - Jaiyul Yoo 2011
We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velo city effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum analysis to constrain dark energy models with high precision.
Measurements of the baryonic acoustic oscillation (BAO) peak in the redshift-space correlation function yield the angular diameter distance D_A(z) and the Hubble parameter H(z) as a function of redshift, constraining the properties of dark energy and space curvature. We discuss the perturbations introduced in the galaxy correlation function by gravitational lensing through the effect of magnification bias and its cross-correlation with the galaxy density. At the BAO scale, gravitational lensing adds a small and slowly varying component to the galaxy correlation function and does not change its shape significantly, through which the BAO peak is measured. The relative shift in the position of the BAO peak caused by gravitational lensing in the angle-averaged correlation function is 10^-4 at z=1, rising to 10^-3 at z=2.5. Lensing effects are stronger near the line-of-sight, however the relative peak shift increases only to 10^-3.3 and 10^-2.4 at z=1 and z=2.5, when the galaxy correlation is averaged within 5 degrees of the line-of-sight (containing only 0.4% of the galaxy pairs in a survey). Furthermore, the lensing contribution can be measured separately and subtracted from the observed correlation at the BAO scale.
193 - Jaiyul Yoo 2008
The shape of the primordial matter power spectrum Plin(k) encodes critical information on cosmological parameters. At large scales, the observable galaxy power spectrum Pobs(k) is expected to follow the shape of Plin(k), but on smaller scales the eff ects of nonlinearity and galaxy bias make the ratio Pobs(k)/Plin(k) scale-dependent. We develop a method that can extend the dynamic range of the Plin(k) recovery by incorporating constraints on the galaxy halo occupation distribution (HOD) from the projected galaxy correlation function wp. We devise an analytic model to calculate Pobs(k) in real-space and redshift-space. Once HOD parameters are determined by matching wp for a given cosmological model, galaxy bias is completely specified, and our analytic model predicts both the shape and normalization of Pobs(k). Applying our method to SDSS main galaxy samples, we find that the real-space Pobs(k) follows the shape of the nonlinear matter power spectrum at the 1-2% level up to k=0.2 h/Mpc. When we apply our method to SDSS LRG samples, the linear bias approximation is accurate to 5% at k<0.08 h/Mpc, but the scale-dependence of LRG bias prevents the use of linear theory at k>0.08 h/Mpc. Our HOD model prediction is in good agreement with the recent SDSS LRG Pobs(k) measurements at all measured scales (k<0.2 h/Mpc), naturally explaining the shape of Pobs(k). The Q-model prescription is a poor description of galaxy bias for the LRG samples, and it can lead to biased cosmological parameter estimates when measurements at k>0.1 h/Mpc are included in the analysis. We quantify the potential bias and constraints on cosmological parameters that arise from applying linear theory and Q-model fitting, and we demonstrate the utility of HOD modeling of future high precision measurements of Pobs(k) on quasi-linear scales.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا