ترغب بنشر مسار تعليمي؟ اضغط هنا

96 - Jaime E. Pineda 2014
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimet er dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.
We investigate the shape of the extinction law in two 1-degree square fields of the Perseus Molecular Cloud complex. We combine deep red-optical (r, i, and z-band) observations obtained using Megacam on the MMT with UKIDSS near-infrared (J, H, and K- band) data to measure the colours of background stars. We develop a new hierarchical Bayesian statistical model, including measurement error, intrinsic colour variation, spectral type, and dust reddening, to simultaneously infer parameters for individual stars and characteristics of the population. We implement an efficient MCMC algorithm utilising generalised Gibbs sampling to compute coherent probabilistic inferences. We find a strong correlation between the extinction (Av) and the slope of the extinction law (parameterized by Rv). Because the majority of the extinction toward our stars comes from the Perseus molecular cloud, we interpret this correlation as evidence of grain growth at moderate optical depths. The extinction law changes from the diffuse value of Rv = 3 to the dense cloud value of Rv = 5 as the column density rises from Av = 2 mags to Av = 10 mags. This relationship is similar for the two regions in our study, despite their different physical conditions, suggesting that dust grain growth is a fairly universal process.
95 - Jaime E. Pineda 2011
We present a ~6.5x8 Expanded Very Large Array (EVLA) mosaic observations of the NH3 (1,1) emission in the Barnard 5 region in Perseus, with an angular resolution of 6. This map covers the coherent region, where the dense gas presents subsonic non-the rmal motions (as seen from single dish observations with the Green Bank Telescope, GBT). The combined EVLA and GBT observations reveal, for the first time, a striking filamentary structure (20 wide or 5,000 AU at the distance of Perseus) in this low-mass star forming region. The integrated intensity profile of this structure is consistent with models of an isothermal filament in hydrostatic equilibrium. The observed separation between the B5-IRS1 young stellar object (YSO), in the central region of the core, and the northern starless condensation matches the Jeans length of the dense gas. This suggests that the dense gas in the coherent region is fragmenting. The region observed displays a narrow velocity dispersion, where most of the gas shows evidence for subsonic turbulence, and where little spatial variations are present. It is only close to the YSO where an increase in the velocity dispersion is found, but still displaying subsonic non-thermal motions
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا