ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of momentum anisotropy on the heavy quark transport coefficients due to collisional and radiative processes in the QCD medium has been studied within the ambit of kinetic theory. Anisotropic aspects (momentum) are incorporated into the hea vy quark dynamics through the non-equilibrium momentum distribution function of quarks, antiquarks, and gluons. These non-equilibrium distribution functions that encode the physics of momentum anisotropy and turbulent chromo-fields have been obtained by solving the ensemble-averaged diffusive Vlasov-Boltzmann equation. The momentum dependence of heavy quark transport coefficients in the medium is seen to be sensitive to the strength of the anisotropy for both collisional and radiative processes. In addition, the collisional and radiative energy loss of the heavy quark in the anisotropic hot QCD medium have been analyzed. The effects of anisotropy on the drag and diffusion coefficients are observed to have a visible impact on the nuclear suppression factor both at the RHIC and LHC.
Along with masses of pion and sigma meson modes, their dissociation into quark medium provide a detail spectral structures of the chiral partners. Present article has studied a finite size effect on that detail structure of chiral partners by using t he framework of Nambu-Jona-Lasinio model. Through this dissociation mechanism, their diffusions and conductions are also studied. The masses, widths, diffusion coefficients, conductivities of chiral partners are merged at different temperatures in restore phase of chiral symmetry, but merging points of all are shifted in lower temperature, when one introduce finite size effect into the picture. The strengths of diffusions and conductions are also reduced due to finite size consideration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا