ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first evidence of the formation of niobium hydrides within niobium films on silicon substrates in superconducting qubits fabricated at Rigetti Computing. We combine complementary techniques including room and cryogenic temperature atomi c scale high-resolution and scanning transmission electron microscopy (HR-TEM and STEM), atomic force microscopy (AFM), and the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) to reveal the existence of the niobium hydride precipitates directly in the Rigetti chip areas. Electron diffraction and high-resolution transmission electron microscopy (HR-TEM) analyses are performed at room and cryogenic temperatures (~106 K) on superconducting qubit niobium film areas, and reveal the formation of three types of Nb hydride domains with different crystalline orientations and atomic structures. There is also variation in their size and morphology from small (~5 nm) irregular shape domains within the Nb grains to large (~10-100 nm) Nb grains fully converted to niobium hydride. As niobium hydrides are non-superconducting and can easily change in size and location upon different cooldowns to cryogenic temperatures, our findings highlight a new previously unknown source of decoherence in superconducting qubits, contributing to both quasiparticle and two-level system (TLS) losses, and offering a potential explanation for qubit performance changes upon cooldowns. A pathway to mitigate the formation of the Nb hydrides for superconducting qubit applications is also discussed.
86 - Jaeyel Lee , Zugang Mao , Kai He 2019
We report on atomic-scale analyses of grain boundary (GB) structures and segregation in Nb3Sn coatings on Nb, prepared by the vapor-diffusion process, for superconducting radiofrequency (SRF) cavity applications, utilizing atom-probe tomography, high -resolution scanning transmission electron-microscopy and first-principles calculations. We demonstrate that the chemical composition of Nb3Sn GBs is correlated strongly with the diffusion of Sn and Nb at GBs during the coating process. In a sample coated with a relatively large Sn flux, we observe an interfacial width of Sn segregation at a GB of ~3 nm, with a maximum concentration of ~35 at.%. After post-annealing at 1100 oC for 3 h, the Sn segregated at GBs disappears and Nb segregation is observed subsequently at GBs, indicating that Nb diffused into the Nb3Sn GBs from the Nb substrate. It is also demonstrated that the amount of Sn segregation in a Nb3Sn coating can be controlled by: (i) Sn flux; and (ii) the temperatures of the Nb substrates and Sn source, which may affect the overall kinetics including GB diffusion of Sn and Nb. An investigation of the correlation between the chemical compositions of GBs and Nb3Sn SRF cavity performance reveals that the Nb3Sn SRF cavities with the best performance (high-quality factors at high accelerating electric-field gradients) do not exhibit Sn segregation at GBs. Our results suggest that the chemical compositions of GBs in Nb3Sn coatings for SRF cavities can be controlled by GB engineering and can be utilized to optimize fabrication of high-quality Nb3Sn coatings for SRF cavities.
We report an atomic-scale analysis of the microstructure of Nb3Sn coating on Nb prepared by vapor diffusion process for superconducting radiofrequency (SRF) cavity application using transmission electron microscopy (TEM). Epitaxial growth of Nb3Sn on the Nb substrate is found and four types of orientation relationships at the Nb3Sn/Nb interface are identified by electron diffraction or high-resolution scanning transmission electron microscopy (STEM) analysis. Thin Nb3Sn grains are observed in regions with low Sn flux and they have the specific orientation relationship, Nb3Sn (1-20)//Nb (-111) and Nb3Sn (002)//Nb (0-11). The Nb3Sn/Nb interface of thin grains had a large lattice mismatch, 12.3 at.%, and a high density of misfit dislocations was observed by HR-STEM. Based on our microstructural analysis of the thin grains, we conclude that the thin regions are probably a result of a slow interfacial reaction with this particular orientation relationship at the interface. The Sn-deficient regions are seen to form initially at the Nb3Sn/Nb interface and remain in the grains due to the slow diffusion of Sn in bulk Nb3Sn. The formation of Sn-deficient regions and the effects of strain and interfacial energies on the formation of Sn-deficient regions at various interfaces were also estimated by first-principle calculation. The finding of orientation relationships at the Nb3Sn/Nb interface provides important information about the formation of defects in Nb3Sn coatings such as large thin regions, Sn-deficient regions, which are critical to the performance of Nb3Sn superconducting radiofrequency cavities for accelerators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا