ترغب بنشر مسار تعليمي؟ اضغط هنا

Despite significant interest in developing general purpose fact checking models, it is challenging to construct a large-scale fact verification dataset with realistic claims that would occur in the real world. Existing claims are either authored by c rowdworkers, thereby introducing subtle biases that are difficult to control for, or manually verified by professional fact checkers, causing them to be expensive and limited in scale. In this paper, we construct a challenging, realistic, and large-scale fact verification dataset called FaVIQ, using information-seeking questions posed by real users who do not know how to answer. The ambiguity in information-seeking questions enables automatically constructing true and false claims that reflect confusions arisen from users (e.g., the year of the movie being filmed vs. being released). Our claims are verified to be natural, contain little lexical bias, and require a complete understanding of the evidence for verification. Our experiments show that the state-of-the-art models are far from solving our new task. Moreover, training on our data helps in professional fact-checking, outperforming models trained on the most widely used dataset FEVER or in-domain data by up to 17% absolute. Altogether, our data will serve as a challenging benchmark for natural language understanding and support future progress in professional fact checking.
Human-Object Interaction (HOI) detection is a task of identifying a set of interactions in an image, which involves the i) localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and ii) the classification of the interac tion labels. Most existing methods have indirectly addressed this task by detecting human and object instances and individually inferring every pair of the detected instances. In this paper, we present a novel framework, referred to by HOTR, which directly predicts a set of <human, object, interaction> triplets from an image based on a transformer encoder-decoder architecture. Through the set prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.
We propose an effective consistency training framework that enforces a training models predictions given original and perturbed inputs to be similar by adding a discrete noise that would incur the highest divergence between predictions. This virtual adversarial discrete noise obtained by replacing a small portion of tokens while keeping original semantics as much as possible efficiently pushes a training models decision boundary. Moreover, we perform an iterative refinement process to alleviate the degraded fluency of the perturbed sentence due to the conditional independence assumption. Experimental results show that our proposed method outperforms other consistency training baselines with text editing, paraphrasing, or a continuous noise on semi-supervised text classification tasks and a robustness benchmark.
In Named Entity Recognition (NER), pre-trained language models have been overestimated by focusing on dataset biases to solve current benchmark datasets. However, these biases hinder generalizability which is necessary to address real-world situation s such as weak name regularity and plenty of unseen mentions. To alleviate the use of dataset biases and make the models fully exploit data, we propose a debiasing method that our bias-only model can be replaced with a Pointwise Mutual Information (PMI) to enhance generalization ability while outperforming an in-domain performance. Our approach enables to debias highly correlated word and labels in the benchmark datasets; reflect informative statistics via subword frequency; alleviates a class imbalance between positive and negative examples. For long-named and complex-structure entities, our method can predict these entities through debiasing on conjunction or special characters. Extensive experiments on both general and biomedical domains demonstrate the effectiveness and generalization capabilities of the PMI.
Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on sparse representatio ns and still underperform retriever-reader approaches. In this work, we show for the first time that we can learn dense representations of phrases alone that achieve much stronger performance in open-domain QA. We present an effective method to learn phrase representations from the supervision of reading comprehension tasks, coupled with novel negative sampling methods. We also propose a query-side fine-tuning strategy, which can support transfer learning and reduce the discrepancy between training and inference. On five popular open-domain QA datasets, our model DensePhrases improves over previous phrase retrieval models by 15%-25% absolute accuracy and matches the performance of state-of-the-art retriever-reader models. Our model is easy to parallelize due to pure dense representations and processes more than 10 questions per second on CPUs. Finally, we directly use our pre-indexed dense phrase representations for two slot filling tasks, showing the promise of utilizing DensePhrases as a dense knowledge base for downstream tasks.
Advanced methods of applying deep learning to structured data such as graphs have been proposed in recent years. In particular, studies have focused on generalizing convolutional neural networks to graph data, which includes redefining the convolutio n and the downsampling (pooling) operations for graphs. The method of generalizing the convolution operation to graphs has been proven to improve performance and is widely used. However, the method of applying downsampling to graphs is still difficult to perform and has room for improvement. In this paper, we propose a graph pooling method based on self-attention. Self-attention using graph convolution allows our pooling method to consider both node features and graph topology. To ensure a fair comparison, the same training procedures and model architectures were used for the existing pooling methods and our method. The experimental results demonstrate that our method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا