ترغب بنشر مسار تعليمي؟ اضغط هنا

During the WISE at 5: Legacy and Prospects conference in Pasadena, CA -- which ran from February 10 - 12, 2015 -- attendees were invited to engage in an interactive session exploring the future uses of the Wide-field Infrared Survey Explorer (WISE) d ata. The 65 participants -- many of whom are extensive users of the data -- brainstormed the top questions still to be answered by the mission, as well as the complementary current and future datasets and additional processing of WISE/NEOWISE data that would aid in addressing these most important scientific questions. The results were mainly bifurcated between topics related to extragalactic studies (e.g. AGN, QSOs) and substellar mass objects. In summary, participants found that complementing WISE/NEOWISE data with cross-correlated multiwavelength surveys (e.g. SDSS, Pan-STARRS, LSST, Gaia, Euclid, etc.) would be highly beneficial for all future mission goals. Moreover, developing or implementing machine-learning tools to comb through and understand cross-correlated data was often mentioned for future uses. Finally, attendees agreed that additional processing of the data such as co-adding WISE and NEOWISE and extracting a multi-epoch photometric database and parallax and proper motion catalog would greatly improve the scientific results of the most important projects identified. In that respect, a project such as MaxWISE which would execute the most important additional processing and extraction as well as make the data and catalogs easily accessible via a public portal was deemed extremely important.
Aims. We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods. We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 microns, selected from an area of 3344 deg^2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0 < J < 17.5, and Y - J > 0.8, were then classified by comparison against template colours of quasars, stars, and brown dwarfs. The L and T templates, spectral types L0 to T8, were created by identifying previously known sources with spectroscopic classifications, and fitting polynomial relations between colour and spectral type. Results. Of the 192 known L and T dwarfs with reliable photometry in the surveyed area and magnitude range, 189 are recovered by our selection and classification method. We have quantified the accuracy of the classification method both externally, with spectroscopy, and internally, by creating synthetic catalogues and accounting for the uncertainties. We find that, brighter than J = 17.5, photo-type classifications are accurate to one spectral sub-type, and are therefore competitive with spectroscopic classifications. The resultant catalogue of 1157 L and T dwarfs will be presented in a companion paper.
120 - Adam J. Burgasser 2014
[abbreviated] We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variabi lity of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot brightness temperature model, we infer an average cloud covering fraction of ~30-55% for Luhman 16B, varying by 15-30% over a rotation period. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for three highly variable T dwarfs, and predicts relatively fast winds (1-3 km/s) for Luhman 16B consistent with lightcurve evolution on an advective time scale (1-3 rotation periods). Our observations support the model of a patchy disruption of the mineral cloud layer as a universal feature of the L dwarf/T dwarf transition.
Kappa Andromedae is a B9IVn star at 52 pc for which a faint substellar companion separated by 55 AU was recently announced. In this work, we present the first spectrum of the companion, kappa And B, using the Project 1640 high-contrast imaging platfo rm. Comparison of our low-resolution YJH-band spectra to empirical brown dwarf spectra suggests an early-L spectral type. Fitting synthetic spectra from PHOENIX model atmospheres to our observed spectrum allows us to constrain the effective temperature to ~2000K, as well as place constraints on the companion surface gravity. Further, we use previously reported log(g) and effective temperature measurements of the host star to argue that the kappa And system has an isochronal age of 220 +/- 100 Myr, older than the 30 Myr age reported previously. This interpretation of an older age is corroborated by the photometric properties of kappa And B, which appear to be marginally inconsistent with other 10-100 Myr low-gravity L-dwarfs for the spectral type range we derive. In addition, we use Keck aperture masking interferometry combined with published radial velocity measurements to rule out the existence of any tight stellar companions to kappa And A that might be responsible for the systems overluminosity. Further, we show that luminosity enhancements due to a nearly pole-on viewing angle coupled with extremely rapid rotation is unlikely. Kappa And A is thus consistent with its slightly evolved luminosity class (IV) and we propose here that kappa And, with a revised age of 220 +/- 100 Myr, is an interloper to the 30 Myr Columba association with which it was previously associated. The photometric and spectroscopic evidence for kappa And B combined with our re-assesment of the system age implies a substellar companion mass of 50^{+16}_{-13} Jupiter Masses, consistent with a brown dwarf rather than a planetary mass companion.
130 - Adam J. Burgasser 2012
Kinematic investigations are being increasingly deployed in studies of the lowest mass stars and brown dwarfs to investigate their origins, characterize their atmospheres, and examine the evolution of their physical parameters. This article summarize s the contributions made at the Kinematics of Very Low Mass Dwarfs Splinter Session. Results discussed include analysis of kinematic distributions of M, L and T dwarfs; theoretical tools for interpreting these distributions; identifications of very low mass halo dwarfs and wide companions to nearby stars; radial velocity variability among young and very cool brown dwarfs; and the search and identification of M dwarfs in young moving groups. A summary of discussion points at the conclusion of the Splinter is also presented.
We present parallax and proper motion measurements, near-infrared spectra, and WISE photometry for the low surface gravity L5gamma dwarf 2MASSJ035523.37+113343.7 (2M0355). We use these data to evaluate photometric, spectral, and kinematic signatures of youth as 2M0355 is the reddest isolated L dwarf yet classified. We confirm its low-gravity spectral morphology and find a strong resemblance to the sharp triangular shaped $H$-band spectrum of the 10 Myr planetary-mass object 2M1207b. We find that 2M0355 is underluminous compared to a normal field L5 dwarf in the optical and MKO J,H, and K bands and transitions to being overluminous from 3-12 microns, indicating that enhanced photospheric dust shifts flux to longer wavelengths for young, low-gravity objects, creating a red spectral energy distribution. Investigating the near-infrared color magnitude diagram for brown dwarfs confirms that 2M0355 is redder and underluminous compared to the known brown dwarf population, similar to the peculiarities of directly imaged exoplanets 2M1207b and HR8799bcd. We calculate UVW space velocities and find that the motion of 2M0355 is consistent with young disk objects (< 2-3 Gyr) and it shows a high likelihood of membership in the AB Doradus association.
We report the first results of a multi-epoch search for wide (separations greater than a few tens of AU), low-mass tertiary companions of a volume-limited sample of 118 known spectroscopic binaries within 30 pc of the Sun, using the 2MASS Point Sourc e Catalog and follow-up observations with the KPNO and CTIO 4m telescopes. Note that this sample is not volume-complete but volume-limited, and, thus, there is incompleteness in our reported companion rates. We are sensitive to common proper motion companions with separations from roughly 200 AU to 10,000 AU (~10 -> ~10). From 77 sources followed-up to date, we recover 11 previously known tertiaries, three previously known candidate tertiaries, of which two are spectroscopically confirmed and one rejected, and three new candidates, of which two are confirmed and one rejected. This yields an estimated wide tertiary fraction of 19.5^+5.2%_-3.7%. This observed fraction is consistent with predictions set out in star formation simulations where the fraction of wide, low-mass companions to spectroscopic binaries is >10%, and is roughly twice the wide companion rate of single stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا