ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the Photon-Plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks.
Radiation from many astrophysical sources, e.g. gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly, compared with source lifetimes. Radiation emitted from these sources is typically associated with non-linear plasma physics, complex field topologies and non-thermal particle distributions. In such circumstances a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows, as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence - or absence - of an inert plasma constituent, when comparing baryonic plasmas (i.e. containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.
In continuation of previous work, numerical results are presented, concerning relativistically counter-streaming plasmas. Here, the relativistic mixed mode instability evolves through, and beyond, the linear saturation -- well into the nonlinear regi me. Besides confirming earlier findings, that wave power initially peaks on the mixed mode branch, it is observed that, during late time evolution wave power is transferred to other wave numbers. It is argued that the isotropization of power in wavenumber space may be a consequence of weak turbulence. Further, some modifications to the ideal weak turbulence limit is observed. Development of almost isotropic predominantly electrostatic -- partially electromagnetic -- turbulent spectra holds relevance when considering the spectral emission signatures of the plasma, namely bremsstrahlung, respectively magneto-bremsstrahlung (synchrotron radiation and jitter radiation) from relativistic shocks in astrophysical jets and shocks from gamma-ray bursts and active galactic nuclei.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا