ترغب بنشر مسار تعليمي؟ اضغط هنا

The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall (DW) is a topological objec t that has been observed to follow this behavior. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii-Moriya (DM) exchange constant. The time needed to accelerate a DW with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the DM exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral DWs. Such unique feature of chiral DWs can be utilized to move and position DWs with lower current, key to the development of storage class memory devices.
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The d omain wall moves along or against the current flow depending on the underlayer material. The direction to which the domain wall moves is associated with the chirality of the domain wall spiral formed in these heterostructures. The one-dimensional model is used to describe the experimental results and extract parameters such as the Dzyaloshinskii-Moriya exchange constant which is responsible for the formation of the domain wall spiral. Fascinating effects arising from the control of interfaces in magnetic heterostructures are described.
The flow of in-plane current through ultrathin magnetic heterostructures can cause magnetization switching or domain wall nucleation owing to bulk and interfacial effects. Within the magnetic layer, the current can create magnetic instabilities via s pin transfer torques (STT). At interface(s), spin current generated from the spin Hall effect in a neighboring layer can exert torques, referred to as the spin Hall torques, on the magnetic moments. Here, we study current induced magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures with a heavy metal (HM) underlayer. Depending on the thickness of the HM underlayer, we find distinct differences in the inplane field dependence of the threshold switching current. The STT is likely responsible for the magnetization reversal for the thinner underlayer films whereas the spin Hall torques cause the switching for thicker underlayer films. For the latter, we find differences in the switching current for positive and negative currents and initial magnetization directions. We find that the growth process during the film deposition introduces an anisotropy that breaks the symmetry of the system and causes the asymmetric switching. The presence of such symmetry breaking anisotropy enables deterministic magnetization switching at zero external fields.
Recent advances in the understanding of spin orbital effects in ultrathin magnetic heterostructures have opened new paradigms to control magnetic moments electrically. The Dzyaloshinskii-Moriya interaction (DMI) is said to play a key role in forming a Neel-type domain wall that can be driven by the spin Hall torque, a torque resulting from the spin current generated in a neighboring non-magnetic layer via the spin Hall effect. Here we show that the strength and sign of the DMI can be changed by modifying the adjacent heavy metal underlayer (X) in perpendicularly magnetized X|CoFeB|MgO heterstructures. Albeit the same spin Hall angle, a domain wall moves along or against the electron flow depending on the underlayer. We find that the sense of rotation of a domain wall spiral11 is reversed when the underlayer is changed from Hf to W and the strength of DMI varies as the number of 5d electrons of the heavy metal layer changes. The DMI can even be tuned by adding nitrogen to the underlayer, thus allowing interface engineering of the magnetic texture in ultrathin magnetic heterostructures.
Recent advances in the understanding of spin orbital effects in ultrathin magnetic heterostructures have opened new paradigms to control magnetic moments electrically. The Dzyaloshinskii-Moriya interaction (DMI) is said to play a key role in forming a Neel-type domain wall that can be driven by the spin Hall torque, a torque resulting from the spin current generated in a neighboring non-magnetic layer via the spin Hall effect. Here we show that the sign of the DMI, which determines the direction to which a domain wall moves with current, can be changed by modifying the adjacent non-magnetic layer. We find that the sense of rotation of a domain wall spiral is reversed when the Ta underlayer is doped with nitrogen in Ta|CoFeB|MgO heterostructures. The spin Hall angle of the Ta and nitrogen doped Ta underlayers carry the same sign, suggesting that the sign of the DMI is defined at the interface. Depending on the sense of rotation, spin transfer torque and spin Hall torque can either compete or assist each other, thus influencing the efficiency of moving domain walls with current.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا